#俄语

俄罗斯语音技术资源大全

2024年09月05日
Cover of 俄罗斯语音技术资源大全
相关项目
Project Cover

plainrussian

plainrussian是一个针对俄语文本可读性分析的开源项目。该系统整合了5种经典可读性算法,并针对俄语特点进行了优化。通过API接口,用户可获取文本或网页的多项可读性指标和详细统计数据。项目还包含标注年龄的文本语料库,为开发新算法提供基础。作为全面的俄语文本分析工具,plainrussian可广泛应用于教育、出版等领域。

Project Cover

awesome-russian-speech

项目整理了俄语语音技术的全面资源,包括识别、合成和转换等领域的数据集、模型和开发工具。内容覆盖从预处理到后处理的各个环节,如重音标注和标点恢复。此外还收录了相关词典、语言学资源和行业历史,为俄语语音技术的研究与开发提供了宝贵参考。

Project Cover

wav2vec2-large-xlsr-53-russian

该项目是一个基于wav2vec2-large-xlsr-53的俄语语音识别微调模型。经Common Voice 6.1和CSS10数据集训练,适用于16kHz采样的语音输入。模型在Common Voice ru测试集上实现13.3%词错误率和2.88%字符错误率,加入语言模型后性能提升至9.57%和2.24%。支持通过HuggingSound库或自定义脚本使用,可应用于多种俄语语音识别场景。

Project Cover

ruRoPEBert-e5-base-2k

ruRoPEBert是Tochka AI团队基于RoPEBert架构开发的俄语句子编码模型。该模型在CulturaX数据集上训练,支持2048个token的上下文,并可扩展。模型集成高效注意力机制和平均池化层,易于使用。在encodechka基准测试中,ruRoPEBert的S+W评分领先其他模型。此外,它还支持分类任务,并可通过RoPE缩放扩展上下文窗口。

Project Cover

sbert_large_nlu_ru

sbert_large_nlu_ru是SberDevices团队开发的俄语句子嵌入模型。这个基于BERT的大型模型可通过HuggingFace库直接调用,支持平均池化以提升嵌入质量。项目提供了Python示例代码,方便用户快速实现句子嵌入计算。该模型为俄语自然语言处理任务提供了高质量的句子表示,是处理俄语文本的有力工具。

Project Cover

rubert-base-cased-nli-threeway

这是一个基于DeepPavlov/rubert-base-cased微调的开源俄语NLP模型。它能够预测短文本间的逻辑关系(蕴含、矛盾或中性),支持自然语言推理和零样本文本分类任务。该模型在多个俄语NLI数据集上训练,并在各种评估集上展现出优秀性能。其多功能性和高效表现使其成为处理俄语文本理解任务的有力工具。

Project Cover

rubert-tiny2-russian-emotion-detection

该项目开发了基于RuBERT-tiny2架构的俄语文本情感分析模型,可识别7种情感类别。模型在CEDR M7数据集上实现85%的多标签准确率和76%的单标签准确率。项目提供Python接口便于集成,同时开源了功能全面的Aniemore软件包。这一解决方案为俄语文本的情感分析任务提供了高效准确的工具支持。

Project Cover

hubert-large-speech-emotion-recognition-russian-dusha-finetuned

该项目利用DUSHA数据集对HuBERT模型进行微调,实现了俄语语音情感识别。经优化后的模型在测试集上表现突出,准确率达0.86,宏F1分数为0.81,超越了数据集基准。模型能够识别中性、愤怒、积极、悲伤等情绪类型。项目还提供了简洁的使用示例代码,便于研究人员和开发者将其集成到语音情感分析任务中。

Project Cover

Vikhr-7B-instruct_0.4

Vikhr-7B-instruct_0.4是一款针对俄语和英语优化的指令微调大语言模型。新版本通过增加SFT训练数据,大幅提升了JSON处理和多轮对话的稳定性,尤其在处理长上下文和复杂提示时表现出色。模型采用Flash Attention 2技术,支持Google Colab使用,并提供GGUF格式。项目包含详细的使用示例和学术引用信息,方便研究人员和开发者快速上手。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号