相关项目
aimo-progress-prize
aimo-progress-prize项目提供了一套AI数学奥林匹克解决方案,包含DeepSeekMath-Base 7B模型微调方法、数据集和自一致性解码算法。项目使用TRL、PyTorch等库,在8个H100 GPU上10小时内完成训练。仓库包括安装指南、训练方法和代码结构说明,为AI数学研究提供参考资源。
NuminaMath-7B-TIR
NuminaMath 7B TIR是一种使用工具集成推理技术训练的语言模型,专门为数学问题解决而设计,在AI数学奥林匹克测试中取得了29/50的得分。经过深度微调,该模型能够处理从基础到高阶数学的复杂问题,尤其是在GSM8k和MATH等基准测试中表现优异。模型基于DeepSeek基础版优化,利用大规模数据集,通过逐步解题和工具推理增强问题解决能力,适合用于数学问题解决和教育场景。
Qwen2.5-Math-7B-Instruct-bnb-4bit
该系列在Qwen2的基础上整合链式思维(CoT)与工具集成推理(TIR),增强了中英文数学解决能力。Qwen2.5-Math提供基础、指令调优和数学奖励模型,性能较前代版提升显著,特别是在数学基准测试中。建议使用最新版本的transformers进行安装和推理,配备丰富的交互式Notebook示例,便于用户快速上手。