#UperNet

upernet-convnext-small - 高效语义分割框架融合ConvNeXt技术
模型语义分割计算机视觉GithubConvNeXtUperNet图像分割Huggingface开源项目
UperNet是一种结合ConvNeXt骨干网络的语义分割框架,融合了特征金字塔网络(FPN)和金字塔池化模块(PPM)。它能为每个像素生成语义标签,适用于场景理解和图像分割等计算机视觉任务。该模型提供多种预训练版本,可根据具体需求应用于不同场景。UperNet的设计旨在提高语义分割的准确性和效率,为研究人员和开发者提供了强大的图像分析工具。
upernet-swin-small - UperNet结合Swin Transformer实现精确语义分割
视觉转换Github场景理解开源项目Swin TransformerUperNetHuggingface语义分割模型
UperNet结合Swin Transformer骨干网络,提供高效的语义分割解决方案,适用于多种视觉任务,实现每像素精确语义标签预测。
upernet-swin-large - Swin Transformer 与 UperNet 结合的语义分割方法
特征金字塔网络Huggingface语义分割Swin Transformer视觉GithubUperNet开源项目模型
UperNet 利用 Swin Transformer 大型网络进行语义分割,框架包含组件如主干网络、特征金字塔网络及金字塔池模块。可与各种视觉主干结合使用,对每个像素预测语义标签,适合语义分割任务,并可在 Hugging Face 平台找到特定任务的优化版本。通过 Swin Transformer 与 UperNet 的结合,用户可在场景理解中实现精确的语义分割。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号