#VILA
VILA - 创新的视觉语言模型预训练方法
VILA视觉语言模型预训练多模态量化Github开源项目
VILA是一种新型视觉语言模型,采用大规模交错图像-文本数据预训练,增强了视频和多图像理解能力。通过AWQ 4位量化和TinyChat框架,VILA可部署到边缘设备。该模型在视频推理、上下文学习和视觉思维链等方面表现出色,并在多项基准测试中获得了优异成绩。项目完全开源,包括训练和评估代码、数据集以及模型检查点。
VILA1.5-3b - 交错图像文本预训练的视觉语言模型突破
模型图像文本预训练边缘部署开源项目多图像推理HuggingfaceVILAGithub视觉语言模型
VILA1.5-3b是一款基于交错图像-文本数据预训练的视觉语言模型。它具备多图像推理、上下文学习和视觉思维链等能力,可通过AWQ 4位量化部署于边缘设备。该模型采用交错图像-文本预训练、语言模型解冻和指令数据重混合等创新技术,有效提升了视觉语言和纯文本任务性能。VILA1.5-3b支持多种硬件架构,适用于计算机视觉、自然语言处理等研究领域。
VILA1.5-3b-s2 - 多模态视觉语言模型VILA支持边缘设备和多图像处理
VILA模型多模态模型Github边缘计算视觉语言模型开源项目Huggingface图像文本处理
VILA1.5-3b-s2是一个基于交错图像-文本数据预训练的视觉语言模型。它具备多图像处理能力,通过AWQ 4位量化可部署于边缘设备。该模型在多图像推理、上下文学习和视觉思维链等方面表现突出,同时保持优秀的文本处理性能。VILA1.5-3b-s2为多模态模型和聊天机器人研究提供了有力支持。
VILA1.5-13b - 多图像推理与跨设备应用的视觉语言模型
VILAGithub开源项目多模态TransformerHuggingface多图推理视觉语言模型模型
此页面介绍VILA模型,一种用于多模态研究的视觉语言模型,通过大规模图文数据预训练,提升多重推理能力。VILA支持多图像推理、情境学习,并提供更丰富的知识表现。通过AWQ 4bit量化,模型适用于Jetson Orin等边缘设备,兼顾性能与兼容性。适合计算机视觉与自然语言处理结合的研究者,支持Linux系统,具备出色的指令跟随和视觉推理能力。
Llama-3-VILA1.5-8B - 视觉语言模型支持多图像推理和边缘计算
Github图文理解开源项目视觉语言模型VILA模型边缘计算Huggingface多模态大模型
Llama-3-VILA1.5-8B是一款基于大规模交错图像-文本数据预训练的视觉语言模型。该模型具备多图像推理、情境学习和视觉思维链等功能,可部署于边缘设备。在12个基准测试中,包括5个学术视觉问答和7个指令跟随测试,Llama-3-VILA1.5-8B展现了优秀性能。这一模型为研究人员和AI爱好者提供了进行大型多模态模型和聊天机器人研究的有力工具。