#视觉变换器

MIMDet - 掩码图像建模应用于目标检测的开源项目
MIMDet物体检测视觉变换器实例分割卷积神经网络Github开源项目
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
dpt-large - 基于视觉变换器的高精度单目深度估计模型
模型GithubDPT-Large视觉变换器开源项目Huggingface密集预测单目深度估计计算机视觉
DPT-Large是一种基于视觉变换器的密集预测模型,专门用于单目深度估计。该模型在140万张图像上训练,具有优秀的零样本迁移能力。DPT-Large使用ViT作为主干网络,并增加了特定的颈部和头部结构,能够精确估计图像深度信息。在多项基准测试中,DPT-Large展现出优异性能,为计算机视觉领域的深度估计任务提供了有力支持。
vivit-b-16x2-kinetics400 - ViViT 扩展Vision Transformer至视频分析领域的创新模型
模型Github视觉变换器开源项目HuggingfaceViViT深度学习计算机视觉视频分类
ViViT是Arnab等人提出的视频视觉Transformer模型,将Vision Transformer的概念扩展到视频领域。这一模型主要应用于视频分类等任务的微调,在视频数据处理方面表现出色。ViViT为视频分析和理解开辟了新途径,为研究人员和开发者提供了进行视频相关任务开发的有力工具。该模型的出现推动了计算机视觉技术在视频领域的发展,为未来的视频智能分析奠定了基础。
owlvit-large-patch14 - 基于Vision Transformer的零样本目标检测模型
模型零样本学习视觉变换器开源项目多模态模型Huggingface物体检测GithubOWL-ViT
OWL-ViT模型采用CLIP和Vision Transformer架构,实现了零样本文本条件目标检测。它可以根据文本查询识别图像中的物体,无需预先定义类别。该模型在大规模图像-文本数据集上进行训练,并在COCO和OpenImages等数据集上微调。OWL-ViT为计算机视觉研究提供了新的可能性,尤其在零样本目标检测领域。
eva02_base_patch14_448.mim_in22k_ft_in22k_in1k - EVA02视觉Transformer的图像分类与特征提取模型
ImageNetGithub开源项目图像分类EVA02模型微调Huggingface视觉变换器模型
EVA02是一款基于视觉Transformer架构的图像分类和特征提取模型。它结合了平均池化、SwiGLU和旋转位置嵌入技术,在ImageNet-22k数据集上进行预训练并在ImageNet-1k上微调。兼容timm库,以确保在不同设备上的一致性和高效性,广泛适用于多种图像分类和特征提取任务。
投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号