#ViTMatte
vitmatte-base-composition-1k - Vision Transformer驱动的图像抠图模型
计算机视觉Huggingface模型深度学习ViTMatte图像抠图视觉transformerGithub开源项目
ViTMatte-base-composition-1k是一个基于Vision Transformer的图像抠图模型,在Composition-1k数据集上训练。该模型采用ViT结构和轻量级头部,能准确估计图像前景对象。ViTMatte在图像抠图任务中表现优异,为图像前景提取提供了高效解决方案。
vitmatte-small-composition-1k - Vision Transformer驱动的先进图像抠图模型
模型图像抠图计算机视觉Github深度学习视觉transformerViTMatte开源项目Huggingface
ViTMatte-small-composition-1k模型采用Vision Transformer技术,为图像抠图任务带来突破性进展。其简洁有效的结构设计,结合Composition-1k数据集的训练,实现了高精度的前景对象分割。该开源项目不仅为研究人员提供了直接可用的工具,还通过Hugging Face平台支持进一步的模型优化,推动了计算机视觉技术的发展。
vitmatte-small-distinctions-646 - 基于ViTMatte模型的高效图像抠图技术
图像抠图轻量化ViTMatteHuggingfaceGithub开源项目模型预训练Vision Transformer
ViTMatte模型利用Distinctions-646数据集进行训练,通过与Vision Transformer的结合,实现图像前景的精确分离。此模型简化了传统图像抠图的复杂性,适用于多种应用。可在Hugging Face平台找到该模型的不同版本,以适应各种图像分离需求。