#XLNet

spacy-transformers: 在spaCy中使用预训练Transformer模型

2024年08月30日
Cover of spacy-transformers: 在spaCy中使用预训练Transformer模型

XLNet: 新一代自然语言处理模型的突破性进展

2024年08月30日
Cover of XLNet: 新一代自然语言处理模型的突破性进展
相关项目
Project Cover

xlnet

XLNet是一种基于广义置换语言建模的新型无监督语言表示学习方法,采用Transformer-XL作为骨干模型,适用于长上下文的语言任务。XLNet在问答、自然语言推理、情感分析和文档排名等多个下游任务中表现优异,超越了BERT,取得了多项任务的最新最佳结果。

Project Cover

spacy-transformers

spacy-transformers通过Hugging Face的transformers实现预训练模型如BERT、XLNet和GPT-2的集成,提升spaCy的功能。支持多任务学习、转换器输出自动对齐等,兼容Python 3.6以上版本,需要PyTorch v1.5+和spaCy v3.0+。

Project Cover

xlnet-base-cased

XLNet是一种创新的无监督语言表示学习方法,采用广义排列语言建模目标和Transformer-XL架构。这使得它在处理长上下文语言任务时表现卓越,并在多个下游任务中取得了领先成果。作为一个预训练模型,XLNet主要用于微调特定任务,尤其适合需要理解完整句子的应用场景,如序列分类、标记分类和问答系统等。

Project Cover

xlnet-large-cased

XLNet大型模型是一种基于英语数据预训练的先进自然语言处理工具。该模型采用新颖的广义排列语言建模方法,结合Transformer-XL架构,在处理长文本上下文时展现出卓越性能。XLNet在问答、自然语言推理、情感分析及文档排序等多项任务中均取得了领先成果。这一模型主要用于下游任务的微调,尤其适合需要分析完整句子的序列分类、标记分类或问答等应用场景。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号