CARLA入门指南 - 开源自动驾驶模拟器

Ray

CARLA简介

CARLA是一个开源的自动驾驶模拟器,专为自动驾驶系统的开发、训练和验证而设计。它基于虚幻引擎构建,提供了丰富的开源代码、协议和数字资产(如城市布局、建筑、车辆等),可以灵活地指定传感器套件和环境条件。

CARLA模拟器截图

主要特性

  • 基于客户端-服务器架构,可扩展性强
  • 提供Traffic Manager管理仿真中的其他车辆行为
  • 支持多种传感器,如摄像头、雷达、激光雷达等
  • 内置录制和回放功能
  • 集成ROS和Autoware等自动驾驶框架
  • 开放资产库,包含多种地图和车辆模型
  • 提供场景运行器,可创建各种驾驶场景

快速开始

下载安装

Linux用户:

Windows用户:

推荐配置

  • CPU: Intel i7 9-11代 / Intel i9 9-11代 / AMD Ryzen 7 / AMD Ryzen 9
  • 内存: 32GB以上
  • GPU: NVIDIA RTX 3070 / 3080 / 4090
  • 操作系统: Ubuntu 20.04

学习资源

  1. CARLA官方文档

  2. CARLA生态系统

  3. 社区资源

贡献指南

如果您想为CARLA项目做出贡献,请查看贡献指南

常见问题

遇到问题时,可以先查阅FAQ寻找解答。

CARLA为自动驾驶研究提供了一个强大而灵活的仿真平台。通过以上资源,您可以快速上手并深入探索CARLA的各项功能。无论您是想开发算法、训练模型,还是进行场景测试,CARLA都能满足您的需求。开始您的CARLA之旅吧!

avatar
0
0
0
相关项目
Project Cover

carla

CARLA是一款专为自动驾驶研究设计的开源模拟器,支持开发、训练和验证自动驾驶系统。提供丰富的开放数字资产,包括城市布局、建筑物和车辆,并支持灵活配置传感器套件和环境条件。CARLA支持在多平台上模拟和测试自动驾驶解决方案。

Project Cover

Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning

该项目在CARLA仿真环境中,使用深度强化学习方法进行自动驾驶训练。通过结合PPO算法和变分自编码器(VAE),加速学习并提高驾驶决策能力。项目采用Python和PyTorch构建,重点在于自动驾驶和障碍物回避的持续学习。对于推动自动驾驶技术和决策效率研究具有显著意义。

Project Cover

InterFuser

该项目融合多模态多视角传感器信息,实现综合场景理解,生成可解释的中间特征,确保动作在安全范围内。该方法在CARLA AD排行榜上取得了最新成果,项目还提供了详细的数据生成、训练和评估步骤,以及实用工具脚本和预训练权重。

Project Cover

carla_garage

基于CARLA仿真器的端到端自动驾驶研究开源项目。提供可配置代码、文档和高性能预训练模型,揭示了端到端驾驶模型的隐藏偏差。在多个基准测试中表现优异,支持数据生成、模型训练和评估,有助于研究人员探索自动驾驶前沿问题。

Project Cover

End-to-end-Autonomous-Driving

该项目整合端到端自动驾驶研究资源,涵盖学习材料、研讨会、论文集、基准测试、数据集及竞赛信息。旨在为自动驾驶研究提供全面参考,推动技术发展。内容定期更新,欢迎社区参与贡献。

Project Cover

awesome-CARLA

CARLA是一款开源的自动驾驶系统模拟器,本文汇总了CARLA相关的优质资源,包括官方发布、教程、示例代码等。涵盖强化学习、模仿学习、多智能体、目标检测、图像分割等多个领域,为开发者提供全面的CARLA学习和应用参考。无论是入门还是进阶,都能在这里找到有价值的CARLA项目和工具。

Project Cover

transfuser

TransFuser项目采用Transformer架构实现多模态传感器数据融合,显著提高自动驾驶系统性能。该方法在CARLA自动驾驶基准测试中表现出色,为端到端自动驾驶提供了新思路。项目开源代码、数据集和预训练模型,便于研究者进行复现和深入研究。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号