#CARLA
carla
CARLA是一款专为自动驾驶研究设计的开源模拟器,支持开发、训练和验证自动驾驶系统。提供丰富的开放数字资产,包括城市布局、建筑物和车辆,并支持灵活配置传感器套件和环境条件。CARLA支持在多平台上模拟和测试自动驾驶解决方案。
Autonomous-Driving-in-Carla-using-Deep-Reinforcement-Learning
该项目在CARLA仿真环境中,使用深度强化学习方法进行自动驾驶训练。通过结合PPO算法和变分自编码器(VAE),加速学习并提高驾驶决策能力。项目采用Python和PyTorch构建,重点在于自动驾驶和障碍物回避的持续学习。对于推动自动驾驶技术和决策效率研究具有显著意义。
InterFuser
该项目融合多模态多视角传感器信息,实现综合场景理解,生成可解释的中间特征,确保动作在安全范围内。该方法在CARLA AD排行榜上取得了最新成果,项目还提供了详细的数据生成、训练和评估步骤,以及实用工具脚本和预训练权重。
carla_garage
基于CARLA仿真器的端到端自动驾驶研究开源项目。提供可配置代码、文档和高性能预训练模型,揭示了端到端驾驶模型的隐藏偏差。在多个基准测试中表现优异,支持数据生成、模型训练和评估,有助于研究人员探索自动驾驶前沿问题。
End-to-end-Autonomous-Driving
该项目整合端到端自动驾驶研究资源,涵盖学习材料、研讨会、论文集、基准测试、数据集及竞赛信息。旨在为自动驾驶研究提供全面参考,推动技术发展。内容定期更新,欢迎社区参与贡献。
awesome-CARLA
CARLA是一款开源的自动驾驶系统模拟器,本文汇总了CARLA相关的优质资源,包括官方发布、教程、示例代码等。涵盖强化学习、模仿学习、多智能体、目标检测、图像分割等多个领域,为开发者提供全面的CARLA学习和应用参考。无论是入门还是进阶,都能在这里找到有价值的CARLA项目和工具。
transfuser
TransFuser项目采用Transformer架构实现多模态传感器数据融合,显著提高自动驾驶系统性能。该方法在CARLA自动驾驶基准测试中表现出色,为端到端自动驾驶提供了新思路。项目开源代码、数据集和预训练模型,便于研究者进行复现和深入研究。