#传感器融合
相关项目
InterFuser
该项目融合多模态多视角传感器信息,实现综合场景理解,生成可解释的中间特征,确保动作在安全范围内。该方法在CARLA AD排行榜上取得了最新成果,项目还提供了详细的数据生成、训练和评估步骤,以及实用工具脚本和预训练权重。
rednose
这个开源项目使用扩展卡尔曼滤波器和符号雅可比计算,为视觉里程计、传感器融合定位和SLAM提供高精度解决方案,支持在线和离线使用。它还包括3D定位误差状态卡尔曼滤波、多状态约束卡尔曼滤波以及Rauch-Tung-Striebel平滑技术。通过使用马哈拉诺比斯距离来拒绝异常值,该项目确保了滤波结果的稳定性和准确性。
cam_lidar_calibration
这是一个开源的相机与激光雷达自动校准工具,通过优化样本选择简化校准流程。它克服了基于目标校准的局限性,可获得适合整个场景的参数估计及不确定性。工具提供硬件设置、配置、数据采集和结果评估的使用说明,支持ROS Melodic环境。
awesome-radar-perception
这个开源项目汇集了自动驾驶雷达感知领域的综合资源,包括各类雷达数据集、信号处理工具、检测跟踪算法和融合方法。项目还归纳了雷达感知的关键挑战,如天气影响和多径效应等。通过持续更新,该资源库旨在促进雷达感知技术在自动驾驶领域的进步。
transfuser
TransFuser项目采用Transformer架构实现多模态传感器数据融合,显著提高自动驾驶系统性能。该方法在CARLA自动驾驶基准测试中表现出色,为端到端自动驾驶提供了新思路。项目开源代码、数据集和预训练模型,便于研究者进行复现和深入研究。