Machine-Learning-Interviews学习资料汇总 - 机器学习面试准备指南

Ray

Machine-Learning-Interviews学习资料汇总 - 机器学习面试准备指南

Machine Learning Interviews Cover

Machine-Learning-Interviews是一个旨在为机器学习和AI技术面试提供全面准备指南的开源项目。该项目由Alireza Dirafzoon创建,他曾在准备面试后收到了Meta、Google、Amazon、Apple等多家科技巨头的offer。本文将为大家详细介绍该项目的主要内容和学习资源。

项目简介

该项目主要面向准备大型科技公司(特别是FAANG)机器学习工程师职位面试的候选人。内容涵盖了技术面试中最常见的几个模块,包括:

  1. 常规编程(算法和数据结构)
  2. 机器学习编程
  3. 机器学习系统设计
  4. 机器学习基础/广度知识
  5. 行为面试

作者根据自身经验,对每个模块的准备方法进行了详细说明。

主要内容

1. 常规编程

这部分主要涉及算法和数据结构相关的编程题目。作者建议通过LeetCode等平台进行练习,掌握常见的算法思想和编程技巧。

2. 机器学习编程

这个模块要求候选人能够实现基本的机器学习算法,如线性回归、逻辑回归等。需要对Python、NumPy等工具有扎实的掌握。

3. 机器学习系统设计

这是近年来越来越受重视的一个环节。候选人需要设计端到端的机器学习系统,考虑数据处理、模型训练、服务部署等各个环节。

4. 机器学习基础知识

这部分考察候选人对机器学习理论的理解,包括各种算法的原理、优缺点等。

5. 行为面试

除了技术能力,公司也很看重候选人的软实力。这部分提供了一些常见的行为面试问题和回答技巧。

学习资源

  1. GitHub仓库: Machine-Learning-Interviews

  2. 在线书籍: 作者正在编写一本关于机器学习面试的在线书籍,可以在GitHub页面找到链接。

  3. 补充资料: 作者还推荐了Production Level Deep Learning这个仓库,提供了关于生产环境中深度学习系统设计的见解。

  4. 社区讨论: 项目的Issues和Pull Requests区有很多有价值的讨论,可以学习其他人的经验。

总结

Machine-Learning-Interviews项目为准备机器学习技术面试的同学提供了一个全面的指南。无论你是刚开始准备还是已经有一定基础,都可以在这个项目中找到有用的资源。希望这个项目能帮助更多人在机器学习领域实现自己的职业目标。

记住,面试准备是一个长期的过程。除了刷题和背诵知识点,更重要的是真正理解这些概念,并能在实际问题中灵活运用。祝大家在机器学习的道路上越走越远!

avatar
0
0
0
相关项目
Project Cover

ML-From-Scratch

本项目使用Python从零实现多个机器学习模型与算法,旨在展示其内部运作。涵盖监督学习、非监督学习、强化学习和深度学习,并提供多项式回归、CNN分类、生成对抗网络等实际案例,适合希望深入理解机器学习原理的开发者和爱好者。

Project Cover

Qix

页面提供丰富的深度学习、机器学习、Golang、PostgreSQL数据库、分布式系统和数据库系统的学习资源。用户可找到相关文档的中文翻译和详细章节链接。项目欢迎PR贡献,如发现错误信息,请通过反馈联系作者。

Project Cover

machine-learning-interview

本指南为准备机器学习面试的候选人提供全面的学习计划,涵盖YouTube推荐系统设计、LinkedIn信息流排名和广告点击预测等实际案例分析。通过大公司的真实面试问题,覆盖从基本的机器学习概念到深度学习和大数据的进阶主题,帮助求职者在Facebook、Amazon、Apple和Google等顶尖公司中脱颖而出。还提供详细的面试准备清单和成功案例分享,帮助求职者积累实战经验。

Project Cover

deep-learning-coursera

Coursera上的深度学习专项课程,帮助学习者掌握神经网络和深度学习的关键概念与技术。课程由知名教授Andrew Ng讲授,涵盖基础神经网络构建、参数优化、卷积神经网络和序列模型的实际应用。课程包括丰富的编程作业和案例研究,帮助学习者通过实践巩固知识。无论初学者还是有经验的开发者,都能通过该课程提升深度学习技能,进入人工智能领域。

Project Cover

machine-learning-roadmap

提供涵盖机器学习问题、流程、工具、数学基础和资源的完整路线图,帮助学习者全面掌握机器学习的核心内容。包含从问题定义到解决方案实施的详细步骤,并推荐相关学习资源,适合机器学习初学者和进阶者。

Project Cover

awesome-project-ideas

提供30多个深度学习和机器学习项目创意,从入门到研究级别,适用于学术界和工业界。涵盖黑客松创意、文本处理、时间序列预测、推荐系统、图像和视频处理、音乐和音频处理等多个领域,帮助开发者和研究人员实践最新技术。

Project Cover

Production-Level-Deep-Learning

本项目提供全面的工程指南,指导在实际应用中部署生产级深度学习系统。涵盖数据管理、开发、训练、评估、测试和部署等关键模块,并推荐最佳实践和工具。内容借鉴Full Stack Deep Learning Bootcamp、TFX Workshop和Pipeline.ai的高级KubeFlow Meetup,确保用户应对从模型训练到生产部署的各种挑战。

Project Cover

Machine-Learning-Interviews

该指南专为机器学习工程师和应用科学家职位的技术面试设计,特别适用于FAANG等大厂。内容包括算法与数据结构、机器学习编码、系统设计、基础知识和行为面试模块。作者基于自身的面试经验和笔记编写,分享如何有效准备常见面试模块。尽管不同公司的机器学习面试结构有所不同,本指南的模块对其他相关职位也有参考价值,帮助应聘者更好地应对机器学习领域的技术挑战。

Project Cover

handson-ml

该项目通过Python教授机器学习基本原理,包含《Hands-on Machine Learning with Scikit-Learn and TensorFlow》书中的示例代码和习题解答。用户可以使用Colab、Binder和Deepnote在线体验这些notebooks,或通过Anaconda在本地安装项目进行学习。详细介绍了安装步骤和常见问题解决方法,帮助用户理解和应用机器学习技术。

最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号