TensorRT-LLM 后端: 在 Triton 推理服务器上高效部署大型语言模型

Ray

TensorRT-LLM 后端简介

TensorRT-LLM 后端是一个专门为 Triton 推理服务器设计的后端,旨在高效部署和服务 TensorRT-LLM 模型。它结合了 NVIDIA TensorRT 的高性能深度学习推理能力和 TensorRT-LLM 框架对大型语言模型的优化,为开发者提供了一个强大的工具来部署最新的 LLM 模型。

主要特性

  • 支持多种并行技术,包括张量并行、流水线并行和专家并行
  • 提供 inflight batching 和 paged attention 等优化技术
  • 支持多种解码策略,如 Top-k、Top-p、Beam Search 等
  • 支持模型量化,可以显著降低内存占用和提高推理速度
  • 多实例和多节点部署支持,可以充分利用硬件资源
  • 与 Triton 无缝集成,提供统一的推理 API 和管理界面

快速入门

要开始使用 TensorRT-LLM 后端,您可以按照以下步骤操作:

  1. 更新 TensorRT-LLM 子模块:
git clone -b v0.11.0 https://github.com/triton-inference-server/tensorrtllm_backend.git
cd tensorrtllm_backend
git submodule update --init --recursive
git lfs install
git lfs pull
  1. 启动 Triton TensorRT-LLM 容器:
docker run --rm -it --net host --shm-size=2g \
    --ulimit memlock=-1 --ulimit stack=67108864 --gpus all \
    -v </path/to/tensorrtllm_backend>:/tensorrtllm_backend \
    -v </path/to/engines>:/engines \
    nvcr.io/nvidia/tritonserver:24.07-trtllm-python-py3
  1. 准备 TensorRT-LLM 引擎:

可以使用 TensorRT-LLM 提供的脚本来转换和构建模型引擎。以 GPT-2 模型为例:

cd /tensorrtllm_backend/tensorrt_llm/examples/gpt

# 下载权重
rm -rf gpt2 && git clone https://huggingface.co/gpt2-medium gpt2
pushd gpt2 && rm pytorch_model.bin model.safetensors && wget -q https://huggingface.co/gpt2-medium/resolve/main/pytorch_model.bin && popd

# 转换检查点
python3 convert_checkpoint.py --model_dir gpt2 \
        --dtype float16 \
        --tp_size 4 \
        --output_dir ./c-model/gpt2/fp16/4-gpu

# 构建 TensorRT 引擎  
trtllm-build --checkpoint_dir ./c-model/gpt2/fp16/4-gpu \
        --gpt_attention_plugin float16 \
        --remove_input_padding enable \
        --paged_kv_cache enable \
        --gemm_plugin float16 \
        --output_dir /engines/gpt/fp16/4-gpu
  1. 准备模型仓库:
mkdir /triton_model_repo
cp -r /tensorrtllm_backend/all_models/inflight_batcher_llm/* /triton_model_repo/
  1. 修改模型配置:

使用提供的脚本填充模型配置文件中的参数:

ENGINE_DIR=/engines/gpt/fp16/4-gpu
TOKENIZER_DIR=/tensorrtllm_backend/tensorrt_llm/examples/gpt/gpt2
MODEL_FOLDER=/triton_model_repo
TRITON_MAX_BATCH_SIZE=4
INSTANCE_COUNT=1
MAX_QUEUE_DELAY_MS=0
MAX_QUEUE_SIZE=0
FILL_TEMPLATE_SCRIPT=/tensorrtllm_backend/tools/fill_template.py
DECOUPLED_MODE=false

python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/ensemble/config.pbtxt triton_max_batch_size:${TRITON_MAX_BATCH_SIZE}
python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/preprocessing/config.pbtxt tokenizer_dir:${TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},preprocessing_instance_count:${INSTANCE_COUNT}
python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},engine_dir:${ENGINE_DIR},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MS},batching_strategy:inflight_fused_batching,max_queue_size:${MAX_QUEUE_SIZE}
python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/postprocessing/config.pbtxt tokenizer_dir:${TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},postprocessing_instance_count:${INSTANCE_COUNT},max_queue_size:${MAX_QUEUE_SIZE}
python3 ${FILL_TEMPLATE_SCRIPT} -i ${MODEL_FOLDER}/tensorrt_llm_bls/config.pbtxt triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},bls_instance_count:${INSTANCE_COUNT}
  1. 启动 Triton 服务:
python3 /tensorrtllm_backend/scripts/launch_triton_server.py --world_size=4 --model_repo=${MODEL_FOLDER}
  1. 发送推理请求:

可以使用 curl 命令或提供的客户端脚本来发送推理请求:

curl -X POST localhost:8000/v2/models/ensemble/generate -d '{"text_input": "What is machine learning?", "max_tokens": 20, "bad_words": "", "stop_words": ""}'

高级特性

多实例支持

TensorRT-LLM 后端支持两种多实例运行模式:

  1. Leader 模式: 为每个 GPU 生成一个 Triton 服务器进程,其中 rank 0 进程作为leader。
  2. Orchestrator 模式: 生成一个作为协调器的 Triton 服务器进程,然后为每个模型需要的 GPU 生成一个 Triton 服务器进程。

多节点支持

TensorRT-LLM 后端支持跨多个节点部署模型,可以充分利用分布式计算资源。

模型并行

支持张量并行、流水线并行和专家并行等多种并行技术,可以有效地将大型模型分布在多个 GPU 上。

解码策略

提供多种解码策略,包括 Top-k、Top-p、Beam Search 和 Medusa 等,可以根据需求选择最适合的生成方式。

量化支持

支持多种量化技术,如 INT8、INT4 等,可以显著减小模型大小并提高推理速度。

结论

TensorRT-LLM 后端为在 Triton 推理服务器上部署大型语言模型提供了一个强大而灵活的解决方案。通过结合 TensorRT 的高性能推理能力和 TensorRT-LLM 的优化技术,它能够实现高效的模型服务。无论是单机多 GPU 还是多节点部署,TensorRT-LLM 后端都能够提供出色的性能和可扩展性。对于需要在生产环境中部署最新 LLM 模型的开发者和企业来说,TensorRT-LLM 后端是一个值得考虑的选择。

TensorRT-LLM Backend Architecture

avatar
0
0
0
最新项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号