Project Icon

T-lite-instruct-0.1

优化指令模型,提升生成质量与安全性

T-lite-instruct-0.1是一种经过bf16格式训练的AI模型,专注于安全性和生成的高质量。它使用多样化的数据集,包括翻译后的英语开源数据集,避免低质量翻译。通过强模型生成的上下文进行训练,在MT-Bench和Arena基准测试中表现优秀,适合高标准工业应用。

Ministral-8B-Instruct-2410 - 多功能高效语言模型,兼具多语言和代码处理能力
GithubHuggingfaceMinistral-8B-Instruct-2410Mistral AI开源项目授权使用模型研究目的许可证
Ministral-8B-Instruct-2410是一款高效的语言模型,具有128k上下文窗口、函数调用支持和多语言代码训练等特点,显著提升同类模型性能。该模型适用于本地智能设备和边缘计算,经过针对性优化以提升多语言和代码处理能力。根据Mistral Research License,该模型适用于非商业研究。Ministral-8B在知识、常识、代码、数学及多语言基准测试中表现优异,为广泛应用提供了强大的支持。
Mistral-7B-Instruct-v0.1-AWQ - AWQ量化优化的Mistral-7B指令模型 支持GPU加速推理
AWQ量化GithubHuggingfaceMistral-7B-Instruct-v0.1人工智能大语言模型开源项目指令微调模型
Mistral-7B-Instruct-v0.1-AWQ是基于Mistral AI开源的指令微调语言模型,经过AWQ 4位量化优化。该模型保留了原版的分组查询注意力和滑动窗口注意力等特性,同时大幅降低了模型大小,提升了GPU推理速度。它支持处理4096个token的长文本输入,适合需要高效部署的应用场景。开发者可以通过Python接口便捷地使用该模型进行文本生成。
mixtral-instruct-awq - AWQ量化的Mixtral Instruct模型替代方案
AWQGithubHuggingfaceMixtral Instruct人工智能开源项目模型量化
这是一个经AWQ量化的Mixtral Instruct工作版本,旨在解决官方版本的功能问题。项目提供了Mixtral-8x7B-Instruct-v0.1模型的稳定实现,适合在资源受限环境中部署大型语言模型。该替代方案为开发者和研究人员提供了一个可靠的选择,有助于提高模型在实际应用中的效率。
Mistral-7B-Instruct-v0.3 - Mistral-7B-Instruct-v0.3模型的指令微调与功能调用概述
GithubHuggingfaceMistral-7B-Instruct-v0.3Open LLM Leaderboard功能调用开源项目文本生成模型模型微调
Mistral-7B-Instruct-v0.3模型经过指令微调,支持32768词汇和v3 Tokenizer,并具备功能调用能力。在多个评测如AI2 Reasoning Challenge和HellaSwag中展示良好表现。该模型支持多种使用方式,包括简单安装、下载指南及在Hugging Face上的文本生成,利用CLI命令与模型对话,或调用自定义功能。尽管缺乏内容审查机制,Mistral团队正与社区合作,以确保输出适合多种环境。
AISquare-Instruct-yi-ko-6b-v0.9.30 - 面向自然语言处理的高效AI驱动文本生成模型
A100硬件AISquare-Instruct-yi-ko-6b-v0.9.30AI训练GithubHuggingfaceInswave Systems大模型开源项目模型
由Inswave Systems开发的AI模型,基于DPO和SFT方法,并在beomi/Yi-Ko-6B模型上进行训练,实现了有效的文本生成。使用A100x4硬件以提高运行效率,并得到了韩国人工智能中心项目的支持,旨在提升自然语言处理应用的性能。在开放的ko-leaderboard排名中表现优异,展示了其出色的性能和应用潜力。
Qwen2.5-1.5B-Instruct - 多语言支持的轻量级指令型语言模型
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目指令微调模型自然语言处理
Qwen2.5-1.5B-Instruct是Qwen2.5系列的指令型语言模型,拥有1.5B参数。它支持29种语言,能处理32,768个token的上下文并生成8192个token的文本。该模型在指令理解、长文本生成和结构化数据处理方面表现优异,尤其擅长编程和数学领域,可应用于多种自然语言处理任务。
EuroLLM-1.7B-Instruct - 支持35种语言的欧洲开源大语言模型
EuroLLMGithubHuggingface多语言模型开源项目机器翻译模型神经网络自然语言处理
EuroLLM-1.7B-Instruct是一个欧盟支持开发的大语言模型,具备17亿参数规模,可处理包括欧盟在内的35种语言。模型在机器翻译性能方面超越同规模的Gemma-2B模型,接近更大规模的Gemma-7B水平。采用transformer架构和分组查询机制,实现高效推理。这是欧盟首个面向多语言处理的开源语言模型项目。
Infinity-Instruct-7M-Gen-mistral-7B - Infinity-Instruct-7M-Gen-Mistral-7B 提升AI模型指令执行效率的开源方案
GithubHuggingfaceInfinity Instruct北京人工智能研究院开源开源项目数据集模型
Infinity-Instruct-7M-Gen-Mistral-7B是一个公开可用的监督指令微调模型。它在Infinity-Instruct-7M和Infinity-Instruct-Gen数据集上进行优化,无需用户反馈强化学习。在AlpacaEval 2.0评测中,该模型表现优于Mixtral 8x22B v0.1、Gemini Pro和GPT-4。使用创新的训练技术,显著减少了模型训练成本,且基于与OpenHermes-2.5-Mistral-7B相同的聊天模板,专为对话场景设计。该模型和相关资源仅用于学术研究,且准确性不可担保。
Phi-3.5-mini-instruct-bnb-4bit - 轻量级多语言模型支持高效微调和长文本理解
GithubHuggingfacePhi-3.5transformers多语言开源项目微调模型长上下文
Phi-3.5-mini-instruct是一款轻量级开源语言模型,支持128K上下文长度。经过监督微调和优化,该模型在多语言能力和长文本理解方面表现出色。适用于内存受限环境、低延迟场景和推理任务,可作为AI系统的基础组件。在商业和研究领域都有广泛应用前景。
Mistral-7B-Instruct-v0.3-GPTQ-4bit - Mistral-7B指令模型的4位量化版本 保持高准确率
GPTQGithubHuggingfaceMistral-7B-InstructvLLM开源项目模型自然语言处理量化模型
Mistral-7B-Instruct-v0.3-GPTQ-4bit是Mistral-7B指令模型的4位量化版本。通过GPTQ技术,该模型在大幅缩小体积的同时,保持了原模型99.75%的准确率。在多项基准测试中,该模型平均准确率达65.05%。它兼容vLLM优化推理,可作为高效的自然语言处理服务器部署。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号