#开源项目

RAVE - 高效的实时神经音频合成工具
RAVE神经音频合成变分自编码器高质量音频实时音频处理Github开源项目
RAVE是一个高效的变分自动编码器,专为快速高质量的神经音频合成设计。支持Windows、Mac和Linux平台的RAVE VST版本,可应用于音乐表演和装置。提供详细教程和多种训练配置,包括数据增广选项。用户可以在Max/MSP或PureData中实时使用RAVE进行风格迁移和高层次操控。多个预训练模型可供下载,支持批量音频文件转换和实时嵌入式平台应用。
TTS - 多语言支持和低延迟的先进文本到语音转换技术
Coqui.aiTTS语音合成深度学习多语言Github开源项目
🐸TTS库提供多达16种语言的高级文本到语音转换模型,支持低于200毫秒的流媒体延迟。它包含丰富的工具用于模型训练和微调,并且拥有超过1100种预训练模型,适用于多语言和多说话人TTS任务。此外,该库还支持高效的语料库分析和管理,为语音合成提供全面支持。
handson-ml - Python机器学习基础与实践指南
Machine LearningPythonScikit-LearnTensorFlowJupyterGithub开源项目
该项目通过Python教授机器学习基本原理,包含《Hands-on Machine Learning with Scikit-Learn and TensorFlow》书中的示例代码和习题解答。用户可以使用Colab、Binder和Deepnote在线体验这些notebooks,或通过Anaconda在本地安装项目进行学习。详细介绍了安装步骤和常见问题解决方法,帮助用户理解和应用机器学习技术。
pytorch-CycleGAN-and-pix2pix - PyTorch中的高效CycleGAN和pix2pix图像翻译
CycleGANpix2pixPyTorch图像翻译神经网络Github开源项目
该项目提供了PyTorch框架下的CycleGAN和pix2pix图像翻译实现,支持配对和无配对的图像翻译。最新版本引入img2img-turbo和StableDiffusion-Turbo模型,提高了训练和推理效率。项目页面包含详细的安装指南、训练和测试步骤,以及常见问题解答。适用于Linux和macOS系统,兼容最新的PyTorch版本,并提供Docker和Colab支持,便于快速上手。
fastbook - fastai与PyTorch的深度学习教程
fastaiPyTorch深度学习MOOCGoogle ColabGithub开源项目
本项目提供涵盖fastai和PyTorch的深度学习教程,适合初学者与进阶用户。可通过Google Colab在线运行,无需本地配置Python环境。项目还包括MOOC课程及相关书籍,系统化帮助用户学习深度学习技术。
pytorch-handbook - 使用PyTorch进行深度学习开发的用户的系统化的入门指南
PyTorch深度学习神经网络卷积神经网络循环神经网络Github开源项目
本开源书籍为使用PyTorch进行深度学习开发的用户提供系统化的入门指南。教程内容覆盖了从环境搭建到高级应用的各个方面,包括PyTorch基础、深度学习数学原理、神经网络、卷积神经网络、循环神经网络等,还包含实践案例与多GPU并行训练技巧。书籍持续更新,与PyTorch版本同步,适合所有深度学习研究者。
ml-agents - 用于游戏和模拟环境的开源智能代理训练工具
Unity ML-Agents ToolkitAI强化学习模拟环境游戏开发Github开源项目
Unity ML-Agents Toolkit是一个开源项目,利用游戏和模拟环境训练智能代理。集成了基于PyTorch的先进算法,用户可以轻松训练2D、3D和VR/AR游戏中的智能代理。支持强化学习、模仿学习和神经进化等方法,适用于NPC行为控制、自动化测试和游戏设计评估。该工具包为游戏开发者和AI研究人员提供了一个共享平台,助力在Unity丰富环境中测试AI进展,并惠及广泛的研究和开发社区。
cheatsheets-ai - 深度学习和机器学习工程师常用速查表
AI Cheatsheets机器学习深度学习TensorFlowKerasGithub开源项目
提供详尽的深度学习和机器学习速查表,包括Tensorflow、Keras、Numpy等热门工具,帮助工程师和研究人员快速掌握核心知识,提高工作效率。访问AI Cheatsheets获取更多资源和最新技术信息,适用于各水平从业者。
ragflow - 基于深度文档理解的高效RAG工作流引擎
RAGFlow深度文档理解自动化RAG工作流程LLM兼容异构数据源Github开源项目
RAGFlow是一个基于深度文档理解的开源RAG引擎,适用于各种规模的企业。结合大型语言模型,它提供可靠的问答功能和可信的引用。RAGFlow支持多种数据格式,包括文本、图片和音频文件,并且兼容本地和远程LLM,提供自动化、无缝集成的RAG工作流,便于通过直观的API进行业务整合。
CVPR2024-Paper-Code-Interpretation - CVPR 2024 论文资源与解读
CVPR2024CVPR2023CVPR2022CVPR2021CVPR2020Github开源项目
获取CVPR 2024最新论文的下载链接和详细解读。持续更新的内容包括技术直播分享、论文分类汇总及各研究方向的深入分析,帮助用户快速了解计算机视觉领域的最新动态。
leedl-tutorial - 覆盖深度学习基础与高级知识的教程
LeeDL-Tutorial李宏毅深度学习机器学习台湾大学Github开源项目
李宏毅教授的深度学习教程,基于《机器学习》(2021年春)并进行了优化,涵盖卷积神经网络、生成模型和自监督学习等多个领域。教程通过详细推导和重点讲解,降低了学习难度,适合中文学习者入门深度学习。
MLAlgorithms - 机器学习算法从零实现的简洁教程
Machine learning algorithmsPythonDeep learningSupport vector machineRandom ForestsGithub开源项目
该项目提供简洁清晰的机器学习算法实现代码,适合希望学习算法内部机制或从头实现算法的用户。所有算法均用Python编写,依赖于numpy、scipy和autograd库。包括深度学习、线性回归、逻辑回归、随机森林、支持向量机、K-Means、GMM、KNN、朴素贝叶斯、PCA、因子分解机、受限玻尔兹曼机、t-SNE、梯度提升树和深度Q学习等算法。
LoRA - 大型语言模型的低秩适配方法与参数节省
LoRAGLUERoBERTaDeBERTaGPT-2Github开源项目
LoRA通过低秩分解矩阵实现大型语言模型的低秩适配,减少了训练参数数量,实现高效的任务切换和存储节省。它在GLUE基准测试中的表现与完全微调相当或更好,同时显著降低了参数需求。LoRA支持RoBERTa、DeBERTa和GPT-2等模型,并已集成到Hugging Face的PEFT库中,提供了便捷的适配解决方案。
TensorFlow-Tutorials - TensorFlow 2 深度学习教程
TensorFlow深度学习教程PythonKerasGithub开源项目
这些教程为深度学习和TensorFlow 2 的新手提供全面指导,涵盖简单线性模型、自然语言处理和图像生成等主题。每个教程附有详细代码示例和相应的YouTube视频讲解,帮助学习者快速掌握。适合希望深入了解TensorFlow及其应用的开发者和研究人员。
TTS - 高性能文本到语音生成库,支持多语言
TTSMozillaText-to-Speech预训练模型多语言支持Github开源项目
TTS库基于最新研究成果,提供高效的文本到语音生成技术,实现了训练便捷、速度快、质量高的最佳平衡。该库包括预训练模型和数据集质量评估工具,已被广泛应用于20多种语言的产品和研究项目。支持多说话人TTS、快速模型训练、多GPU训练,并兼容PyTorch、TensorFlow和TFLite等多种平台。
petals - 本地运行大型语言模型,BitTorrent 风格
PetalsLlama 3.1分布式推理大模型微调GPU共享Github开源项目
Petals项目让用户能够在家中或通过Google Colab运行Llama 3.1、Mixtral、Falcon和BLOOM等大型语言模型。通过分布式网络托管模型层,推理速度可提升至10倍。用户可以微调模型以满足特定任务需求,并且支持隐私保护和私人群组设置。该项目依赖社区共享GPU资源,提供详细的教程和支持,帮助用户快速上手并充分利用其功能。
Deep_reinforcement_learning_Course - 掌握Stable Baselines3、RL Baselines3 Zoo、Sample Factory和CleanRL等库的使用的深度强化学习课程
AI训练RL库训练代理Github开源项目Deep Reinforcement LearningHugging Face
免费深度强化学习课程,结合理论与实践,掌握Stable Baselines3、RL Baselines3 Zoo、Sample Factory和CleanRL等库的使用。训练智能体在SnowballFight、Huggy the Doggo、MineRL(Minecraft)、VizDoom(Doom)及经典环境(如Space Invaders、PyBullet)中运行。发布和下载社区智能体,并参与挑战与其他团队及AI对抗。
lance - 优化机器学习工作流程的高性能列式数据格式
LanceParquet机器学习矢量搜索数据格式Github开源项目
Lance是为机器学习工作流程优化的现代列式数据格式,提供比Parquet快100倍的随机访问性能,支持矢量索引和数据版本控制。兼容pandas、DuckDB、Polars和pyarrow,适用于搜索引擎、大规模机器学习训练以及复杂数据的存储和查询,如机器人数据和大型图像。更多集成支持即将推出。
streamlit - 将 Python 脚本快速转换为交互式 Web 应用程序的工具
社区云平台Github开源项目StreamlitPython数据应用开源软件
Streamlit能够在几分钟内将Python脚本转变为交互式Web应用程序,大大缩短开发时间。用户可以创建仪表板、生成报告或开发聊天应用,并通过Community Cloud平台部署和管理这些应用。Streamlit简洁易用,支持快速原型设计和实时编辑,完全开源且免费,是开发各类数据应用的理想工具。
stanford_alpaca - 基于52K数据微调的7B LLaMA指令跟随模型
Stanford AlpacaLLaMA model指令跟随模型数据生成微调Github开源项目
Stanford Alpaca项目提供了一个基于52K指令数据微调的7B LLaMA模型。该项目包含数据生成代码、模型微调代码和从权重差异恢复Alpaca-7B权重的代码。模型基于Self-Instruct技术生成的数据进行微调,仅限于研究用途。注意模型尚未经过安全性微调,使用时需谨慎。
deep-chat - 可定制的AI聊天组件,轻松集成至任意网站
开源项目Deep ChatAI聊天组件自定义功能API连接深度聊天2.0Github
Deep Chat是一款高度可定制的AI聊天组件,能够无缝集成到任何网站。支持连接多种API,包括流行的ChatGPT等AI服务,提供摄像头捕捉、语音输入输出、文件传输等功能。全新2.0版本优化了用户体验和配置选项,带来卓越的聊天体验。
caffe - 一个用于深度学习的快速开放框架
Caffe深度学习框架BAIRBVLC模型动物园Github开源项目
Caffe是由伯克利AI研究中心和社区贡献者开发的深度学习框架,强调高效表达、速度和模块化。用户可以通过项目网站获取详细信息,包括DIY深度学习教程、文档、参考模型和社区模型库。Caffe提供多种自定义版本,例如优化CPU和多节点支持的Intel Caffe、适用于AMD和Intel设备的OpenCL Caffe,以及Windows Caffe。社区用户可通过Gitter聊天和Google论坛进行交流,提交问题和建议。项目遵循BSD 2-Clause许可证,鼓励在研究中引用。
mediapipe - 支持在移动、Web、桌面、边缘设备和物联网中集成机器学习功能的平台
MediaPipe机器学习人工智能跨平台开源项目Github
MediaPipe为开发者提供了一个平台,支持在移动、Web、桌面、边缘设备和物联网中集成机器学习功能。通过跨平台API和预训练模型,可快速部署和定制AI解决方案。MediaPipe还包含模型定制工具和浏览器内的可视化评估工具,支持高效开发和迭代。欢迎访问Google官方文档了解更多,并参与社区交流和贡献。
DeepSpeech - 开源的深度学习语音识别引擎
Project DeepSpeechTensorFlow开源语音识别机器学习Github开源项目
DeepSpeech是一个开源语音转文字引擎,基于百度的Deep Speech研究,并利用Google TensorFlow实现。提供详细的安装、使用和训练模型文档。最新版本及预训练模型可在GitHub获取,支持和贡献指南请参阅相应文件。
openpose - 实时检测人体、手部、面部和足部的多人人体关键点
OpenPose人体姿态识别实时多人人体关键点检测CMU Panoptic Studio三维重建Github开源项目
OpenPose是首个实现实时多人人体、手部、面部和足部关键点检测的系统,能够在单张图像上检测135个关键点。其功能包括2D和3D姿态估计、支持Unity插件和多种输入输出方式,兼容多个操作系统和硬件配置,适用于研究和开发项目。
fastai - 一个为从业者提供快速提供在标准深度学习领域中提供最先进的高级组件,并提供可以混合和匹配的低级组件构建新方法的深度学习库
fastaiPyTorch深度学习计算机视觉GPU优化Github开源项目
fastai是一个深度学习库,提供高层组件以快速实现高性能结果,同时为研究人员提供可组合的低层组件。通过分层架构和Python、PyTorch的灵活性,fastai在不牺牲易用性、灵活性和性能的情况下,实现了高效的深度学习。支持多种安装方式,包括Google Colab和conda,适用于Windows和Linux。学习资源丰富,包括书籍、免费课程和详细文档。
chidori - 一个开源的编排器、运行时和集成开发环境(IDE),用于与现代人工智能工具协同构建软件。
ChidoriAI代理反应式运行时时间旅行调试Python支持Github开源项目
Chidori是一个开源编排器、运行时和IDE,专为构建AI代理而设计,提供状态空间探索、执行暂停与恢复等功能。支持Python和JavaScript代码执行,并具备时间旅行调试和可视化调试环境。Chidori帮助开发者创建和管理复杂的长时间运行工作流,简化AI模型的集成和操作。
ai-renamer - 智能文件重命名CLI工具,兼容多种语言模型
ai-renamerOllamaLM Studio文件重命名CLI工具Github开源项目
基于Node.js的CLI工具,利用Ollama和LM Studio模型(如Llava、Gemma、Llama等)智能识别并重命名文件。支持重命名视频、图片及其他文件,适用于Ollama或LM Studio用户,并可配置OpenAI及自定义端口。通过简单的命令行操作,提供灵活的文件命名方式和多种参数设置,满足用户需求。
cog-face-to-many - 面部图像轻松转化为3D、像素艺术、电子游戏、粘土动画和玩具效果
face-to-manyComfyUI3DAI模型视频游戏Github开源项目
face-to-many项目可以将任何面部图像转换为3D、像素艺术、电子游戏、粘土动画和玩具效果。该项目可在Replicate和ComfyUI上运行,提供了必要的自定义节点,如ComfyUI Controlnet Aux、InstantID和IPAdapter Plus等。通过克隆仓库、创建虚拟环境并安装依赖项,用户可以在本地运行该项目。详细的安装和运行指南帮助用户快速启动并体验项目功能。
TornadoVM - 适用于异构硬件的Java程序自动化插件
TornadoVMOpenCLPTXSPIR-VJavaGithub开源项目
TornadoVM是一个针对OpenJDK和GraalVM的插件,能够在异构硬件上自动运行Java程序。它支持OpenCL、PTX和SPIR-V设备,包括多核CPU、专用GPU(如Intel、NVIDIA、AMD)、集成GPU(如Intel HD Graphics和ARM Mali)和FPGA(如Intel和Xilinx)。TornadoVM具有三个后端,可生成OpenCL C、NVIDIA CUDA PTX汇编和SPIR-V二进制文件,开发人员可以选择安装和运行所需的后端。
opencv - OpenCV开源计算机视觉库资源与贡献指导
OpenCV计算机视觉开源库AI文档Github开源项目
OpenCV是开源的计算机视觉库,提供详尽的文档、在线课程和活跃的Q&A论坛。用户可在GitHub上报告问题和贡献代码,需遵循明确的贡献指南。此外,OpenCV支持提交社区项目和参与志愿者活动,通过多个平台获取最新的计算机视觉与AI动态。
annotated_deep_learning_paper_implementations - 简洁易懂的PyTorch神经网络和算法实现
labml.aiPyTorchTransformerGANReinforcement LearningGithub开源项目
该项目提供详细文档和解释的简明PyTorch神经网络及算法实现,涵盖Transformer、GPT-NeoX、GAN、扩散模型等前沿领域,并每周更新新实现,帮助研究者和开发者高效理解深度学习算法。
ML-From-Scratch - 深入理解机器学习算法,从基础到实际案例
Machine LearningPythonSupervised LearningUnsupervised LearningReinforcement LearningGithub开源项目
本项目使用Python从零实现多个机器学习模型与算法,旨在展示其内部运作。涵盖监督学习、非监督学习、强化学习和深度学习,并提供多项式回归、CNN分类、生成对抗网络等实际案例,适合希望深入理解机器学习原理的开发者和爱好者。
d2l-en - 互动深度学习教程,结合代码、数学与讨论
D2L.ai深度学习开源书籍Jupyter笔记本机器学习Github开源项目
这本开源书籍使用Jupyter笔记本无缝整合深度学习的概念、背景和代码,免费提供给所有人。书中包含可运行代码、技术深度和社区讨论,帮助读者解决实际问题并成长为应用机器学习科学家。
Paddle - 拥有先进技术和丰富功能的工业平台
PaddlePaddle深度学习工业平台模型训练高性能推理引擎Github开源项目
PaddlePaddle是中国首个自主研发并开源的深度学习平台,提供先进技术和多样功能,包括核心框架、模型库、开发工具和服务平台。该平台广泛应用于制造、农业、企业服务等行业,已服务超过1070万开发者和23.5万企业,生成86万个模型。PaddlePaddle支持超大规模训练、兼容第三方模型、提供高性能推理引擎,并拥有丰富的行业模型库和开源资源,推动AI商业化。
bytom - 高度可扩展的区块链协议,实现数字资产的管理与交易
区块链数字资产多资产共享账本Go语言Github开源项目Bytom
Bytom是一种区块链协议,支持用户定义、发行和转移数字资产。其官方golang实现提供关键管理、账户及资产管理、交易发送等功能,可通过Homebrew或源码安装。项目正在积极开发中,提供详细的安装和运行指南,并欢迎社区贡献。