Project Icon

anchoring-ai

无代码AI应用构建协作开源平台

Anchoring AI是一个无代码AI应用构建平台,支持团队协作开发基于GPT等大型语言模型的应用。平台提供拖放式界面、模块化设计、批处理功能和提示管理,便于创建和分享AI应用。它集成Langchain,支持自定义认证,并通过缓存优化提升性能、降低成本。该开源项目旨在促进团队向AI驱动转型。

Anchoring AI

License: Apache Discord Follow EN doc

Why Anchoring AI? | Live Demo and Videos | Docker Deployment | Installation Guide

Why Anchoring AI?

Anchoring AI is an open-source no-code tool for teams to collaborate on building, evaluating, and hosting applications leveraging GPT and other large language models. You could easily build and share LLM-powered apps, manage your budget and run batch jobs. With Anchoring AI, managing access, controlling budgets, and running batch jobs is a breeze. We aim to be the destination of choice for transforming your team into an AI-centric powerhouse.

We provide:

  • No-Code Interface: Quickly build apps with language models.
  • Modular Design: Easily add your own models, datasets and extensions.
  • Drag-and-Drop: Chain components to create powerful apps.
  • Batch Processing: Efficiently handle evaluations and repetitive tasks.
  • Prompt Management: Effortlessly manage your prompt and chains.
  • Easy Sharing: Streamline collaboration and sharing.
  • Secure Access: Customizable authentication for team management.
  • Langchain Integration: Seamless compatibility with Langchain (Python).
  • Optimized Caching: Reduce costs and boost performance.

Live Demo and Videos

Live Website

You can check out our Alpha Release here.

Videos

https://github.com/AnchoringAI/anchoring-ai/assets/20156958/eece7096-7e54-476e-a0f9-93926918ada1

Upcoming Features

  • Expanded Language Model Support: Integration with more language models.
  • Extended Capabilities: Additional extensions and a new chat mode.
  • Advanced Evaluation Metrics: Custom modules for calculating evaluation metrics.
  • Robust Security: Strengthened security measures.
  • Enhanced Modularity: Improved standard components for increased flexibility.

Docker Deployment

If you prefer to deploy Anchoring AI using Docker, this section provides a step-by-step guide to do so.

Prerequisites

  • Docker must be installed on your system.

Instructions

  1. Clone the GitHub Repository
    If you haven't already, clone the repository to your local machine.

    git clone https://github.com/AnchoringAI/anchoring-ai.git
    
  2. Navigate to the Project Root Directory

    cd anchoring-ai
    
  3. Build the Docker Image

    docker-compose build
    
  4. Run Docker Containers

    docker-compose up
    

Your application should now be accessible at localhost:3000.

Teardown

  • Stop Docker Containers

    docker-compose down
    
  • Remove All Docker Resources (Optional)

    docker system prune -a
    

Installation Guide

This guide is primarily designed for Linux and macOS. Windows users can still follow along with some adjustments specified below.

Prerequisites

Before starting the installation, ensure you have administrator-level access to your system.

Note for Windows Users

  1. Install and start Redis which is not supported on Windows through Windows Subsystem for Linux (WSL).
  2. Comment out uwsgi==2.0.21 in back-end/requirements.txt as this package is not supported for Windows.
  3. Add --pool=solo for the Celery worker args in back-end/src/celery_worker.py to support batch jobs.

Step 1: Install MySQL 8.0

  1. Download MySQL 8.0: Go to the official MySQL downloads page and download the MySQL 8.0 installer for your operating system.

  2. Install MySQL: Run the installer and follow the on-screen instructions to install MySQL.

    • Choose a setup type (Developer Default, Server only, etc.)
    • Configure the server (if prompted)
    • Set the root password and optionally create other users
  3. Start MySQL:

    • For Linux and macOS, you can usually start MySQL with the following command:
      sudo systemctl start mysql
      
    • For Windows, it often starts automatically or you can start it through the Services application.
  4. Verify Installation: Open a terminal and execute the following:

    mysql --version
    

    This should display the installed MySQL version.

Step 2: Install Redis 5.0.7

  1. Download Redis 5.0.7: Visit the official Redis downloads page and download the Redis 5.0.7 tarball or installer for your operating system.
  2. Install Redis:
    • For Linux and macOS: Extract the tarball and run the following commands in the terminal:
      cd redis-5.0.7
      make
      make install
      
    • For Windows: You may need to use Windows Subsystem for Linux (WSL) or a Redis Windows port.
  3. Start Redis:
    • For Linux and macOS: You can usually start Redis by running:
      redis-server
      
    • For Windows: If you're using WSL, you can start it the same way as on Linux.
  4. Verify Installation: Open a new terminal and run:
    redis-cli ping
    
    If Redis is running, this will return "PONG".

Step 3: Install Node.js v18.16.0

  1. Download and install Node.js version 18.16.0 from the official website.
  2. Verify the installation by running node -v in the terminal.

Step 4: Install Python 3.8.10

  1. Download and install Python version 3.8.10 from the official website.
  2. Verify the installation by running python --version or python3 --version in the terminal.

Step 5: Clone the GitHub Repository

Run the following command in the terminal:

git clone https://github.com/AnchoringAI/anchoring-ai.git

Step 6: Initialize and Configure Database

Initialize Database

  1. Open your terminal and navigate to the scripts directory within your project:

    cd path/to/your/project/scripts
    
  2. Open the MySQL shell by entering the following command:

    mysql -u [your_username] -p
    

    You will be prompted to enter the password for [your_username].

  3. Once inside the MySQL shell, switch to the database you intend to use (if it already exists). Replace [your_database] with the name of your database:

    use [your_database];
    
  4. Execute the init_db.sql script to initialize your MySQL database:

    source init_db.sql
    

Configure Database Connection in Code

  1. Navigate to the config.py file located in the back-end/src directory:

    cd path/to/your/project/back-end/src
    
  2. Open config.py in your favorite text editor and locate the DevelopmentConfig class.

  3. Update the database configuration class to match your MySQL settings:

    class DevelopmentConfig(BaseConfig):
        USERNAME = '[your_username]'
        PASSWORD = '[your_password]'
        HOST = 'localhost'
        PORT = '3306'
        DATABASE = '[your_database]'
        DB_URI = f'mysql+pymysql://{USERNAME}:{PASSWORD}@{HOST}:{PORT}/{DATABASE}?charset=utf8'
        SQLALCHEMY_DATABASE_URI = DB_URI
    

Replace [your_username], [your_password], and [your_database] with the MySQL username, password, and database name you've chosen.

After completing these steps, your database should be initialized and your application configured to connect to it.

Step 7: Set Up Front-end

  1. Change your current directory to the front-end folder:
cd front-end
  1. Install all necessary packages:
npm install
  1. Start the front-end server:
npm start

Step 8: Set Up Back-end

  1. Change your current directory to the root directory and then navigate to back-end:
cd ..
cd back-end
  1. Install all required Python packages:
pip install -r requirements.txt

Step 9: Run the Application

  1. Navigate to the src directory:

    cd src
    
  2. Start the Python application:

    • For Linux and macOS:
      python3 app.py
      
    • For Windows:
      python app.py
      
  3. Start the Celery worker in the background:

    • For Linux and macOS:
      python3 celery_worker.py >> logs/celery_worker_log.txt 2>&1
      
    • For Windows:
      python celery_worker.py >> logs/celery_worker_log.txt 2>&1
      

After completing these steps, you should be able to see the app running at localhost:3000.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

问小白

问小白是一个基于 DeepSeek R1 模型的智能对话平台,专为用户提供高效、贴心的对话体验。实时在线,支持深度思考和联网搜索。免费不限次数,帮用户写作、创作、分析和规划,各种任务随时完成!

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

Trae

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号