Project Icon

Emu3-VisionTokenizer

Emu3多模态模型通过单一预测方法实现突破性能

Emu3是一套创新的多模态模型,采用单一的下一个令牌预测方法进行训练。该模型将图像、文本和视频统一处理,从头训练单个Transformer模型。在生成和理解任务中,Emu3的表现超越了SDXL、LLaVA-1.6和OpenSora-1.2等知名模型,无需复杂架构。Emu3能生成高质量图像、理解视觉语言,并通过简单预测生成连贯视频,展现了多模态AI的新可能。

Emu3-Gen - 统一模型驱动的AI系统实现图像文本与视频的生成与理解
AI生成Emu3GithubHuggingface图像处理多模态模型开源项目模型深度学习
Emu3采用单一变换器架构,将图像、文本和视频转化为统一序列空间进行处理。通过纯粹的下一标记预测训练方式,该系统在图像生成、视觉语言理解和视频生成等多个任务中展现出优异性能。与SDXL、LLaVA-1.6等专门模型相比,Emu3以更简洁的架构实现了更强的多模态处理能力。
Emu - 多模态AI模型 图像文本智能生成的新突破
EmuGithub多模态模型开源项目生成式人工智能自然语言处理视觉感知
Emu是BAAI开发的先进多模态生成模型系列,包括入选ICLR 2024的Emu1和CVPR 2024的Emu2。这些模型展示了卓越的多模态理解和生成能力,能在复杂环境中无缝生成图像和文本。Emu在图像描述、视觉问答等任务中表现优异,超越了许多现有模型。作为通用基础模型,Emu适用于广泛的应用场景,如智能创作、视觉分析等,代表了AI技术的新发展方向。BAAI开源Emu旨在推动多模态智能研究的进步,为下一代AI技术发展铺平道路。
OmniTokenizer - 联合图像视频标记器实现高效视觉生成
GithubOmniTokenizerVQVAE图像视频联合标记器开源项目视觉生成语言模型
OmniTokenizer是一个图像和视频联合标记器,采用单一模型和权重,提供最先进的重建性能。它具有高分辨率和长视频适应性,可与语言模型和扩散模型结合实现视觉生成。项目提供预训练模型、训练脚本和评估工具,支持VQVAE和VAE版本,为视觉生成研究提供基础设施。
multi_token - 将多模态嵌入到大语言模型的开源框架
Githubmulti_token图像识别多模态嵌入大语言模型开源项目语音识别
multi_token是一个开源项目,旨在扩展大语言模型的多模态处理能力。该框架支持将图像、音频、文档和视频等多种模态编码为统一格式,并嵌入到单个模型中。它提供了简便的实现方法,使开发者能够轻松构建支持长文档、图像、音频和视频等多模态输入的语言模型。
llavanext-qwen-siglip-tokenizer - 整合多模态模型的开源项目探索图像与文本处理新方向
GithubHuggingfacetransformers人工智能开源项目机器学习模型模型卡片自然语言处理
该项目整合了LLaVA、Qwen和SIGLIP等先进多模态模型的功能,基于Transformers库开发高效tokenizer。它支持视觉问答和图像描述等跨模态任务,为计算机视觉和自然语言处理的交叉研究提供了实用工具。该项目旨在提供一个强大的图像-文本处理框架,为研究人员和开发者探索和应用多模态AI提供便捷途径,有望在相关领域带来突破性进展。
1d-tokenizer - 创新1D图像分词框架实现高效图像处理
GithubTiTok图像标记化开源项目生成模型神经网络计算机视觉
1d-tokenizer项目开发了创新的1D图像分词框架,将256×256图像压缩至32个离散标记。该技术突破2D分词限制,提供更灵活紧凑的图像表示。相比扩散模型,生成速度提升数百倍,同时维持高质量输出。研究还深入探讨1D图像分词特性,为图像处理领域开辟新方向。
e5-v - 多模态嵌入优化框架与单模态训练策略
E5-VGithubHuggingfacetransformers单模态训练图像文本处理多模态嵌入开源项目模型
E5-V框架通过调整多模态大型语言模型,有效实现多模态嵌入,提高不同输入之间的连接能力,即便不进行微调。其提出的单模态训练方法,仅训练文本对,表现超过多模态训练。
VisionLLM - 面向视觉任务的开放式多模态大语言模型
GithubVisionLLM人工智能多模态大语言模型开源项目视觉语言任务计算机视觉
VisionLLM 系列是一种多模态大语言模型,专注于视觉相关任务。该模型利用大语言模型作为开放式解码器,支持数百种视觉语言任务,包括视觉理解、感知和生成。VisionLLM v2 进一步提升了模型的通用性,扩展了其在多模态应用场景中的能力,推动了计算机视觉与自然语言处理的融合。
VLM2Vec-Full - 视觉语言模型VLM2Vec的多模态嵌入训练方法
GithubHuggingfaceTIGER-LabVLM2Vec多模态嵌入对比学习开源项目模型视觉语言模型
VLM2Vec在Phi-3.5-V模型中引入EOS标记,实现跨多模态输入的统一嵌入表达,高效结合文本与图像。通过对比学习在MMEB-train数据集上训练,并在36个数据集上进行评估,Lora训练方式表现最佳。项目提供模型检查点及完整训练记录,供用户在GitHub仓库克隆下载,通过代码实现文本与图像的嵌入和相似度计算,助力模型运用。
MultiModalMamba - 处理文本与图像的多模态AI模型
AI模型GithubMambaMultiModalMambaVision TransformerZeta开源项目
MultiModalMamba 是一个结合 Vision Transformer 和 Mamba 的高性能多模态 AI 模型,基于简洁强大的 Zeta 框架。它可以同时处理文本和图像数据,适用于各种 AI 任务,并支持定制化设置。MultiModalMamba 提供高效数据处理和多种数据类型融合,优化您的深度学习模型表现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号