Project Icon

Italian_NER_XXL

意大利实体识别模型,识别52类实体

该人工智能模型能够识别52类意大利语实体,具备79%的准确率,并基于BERT技术进行持续更新。其在法律、金融和隐私等领域表现出色,提供多功能的实体识别支持。

umberto-commoncrawl-cased-v1 - 高性能意大利语预训练语言模型 支持全词遮蔽技术
GithubHuggingfaceUmBERTo命名实体识别开源项目意大利语言模型模型自然语言处理预训练模型
该模型是一个意大利语预训练语言模型,基于OSCAR语料库训练,支持命名实体识别和词性标注等自然语言处理任务。模型采用全词遮蔽技术,在多个基准测试中准确率达到98%以上。开发者可通过Hugging Face平台快速部署和使用该模型。
cerbero-7b - 意大利AI革命的开创性语言模型
AI解决方案GithubHuggingfacecerbero-7b开源开源项目意大利模型语言模型
cerbero-7b是首个完全免费且开源的意大利大型语言模型,其性能可与ChatGPT 3.5媲美,适合用于研究及商业应用。基于mistral-7b, cerbero-7b在意大利AI领域填补了空白,并推进了多行业的创新及技术与大众的结合。模型采用Apache 2.0许可,支持不受限制的使用,适合意大利语言AI应用的多种需求。
roberta-large-ner-english - 基于RoBERTa的英语命名实体识别模型 擅长处理非正式文本
GithubHuggingFaceHuggingfaceNERroberta-large实体识别开源项目模型自然语言处理
roberta-large-ner-english是一个基于RoBERTa大型模型微调的英语命名实体识别模型。它在CoNLL-2003数据集上训练,在验证集上实现了97.53%的F1分数。该模型在处理电子邮件、聊天等非正式文本时表现优异,尤其擅长识别不以大写字母开头的实体。相比SpaCy,它在非正式文本上的表现更出色。模型可识别人名、组织、地点和杂项实体,并可通过HuggingFace库轻松集成到NLP项目中。
sentence-bert-base-italian-uncased - 意大利语句向量模型 支持文本特征提取和语义相似度计算
GithubHuggingfacesentence-transformers句向量模型开源项目文本相似度模型模型训练自然语言处理
该模型是基于BERT架构的意大利语sentence-transformers模型,可将文本映射为768维向量。它支持文本特征提取、语义相似度计算和文本聚类等任务,适用于意大利语自然语言处理场景。模型使用CosineSimilarityLoss训练,并提供了详细的使用示例,可通过sentence-transformers或HuggingFace Transformers库轻松集成。
bert-base-multilingual-cased-ner-hrl - 基于mBERT的多语言命名实体识别模型覆盖10种主要语言
GithubHugging FaceHuggingfacebert-base-multilingual-cased命名实体识别多语言模型开源项目模型自然语言处理
bert-base-multilingual-cased-ner-hrl是一个多语言命名实体识别模型,基于mBERT微调而来。该模型支持阿拉伯语、德语等10种主要语言,能够识别地点、组织和人名。模型通过聚合多语种新闻数据集训练,适用于广泛的NER任务,但在特定领域可能存在局限性。使用简单,可通过Transformers库快速部署。模型可通过Hugging Face的Transformers库轻松集成到各种NLP项目中,适用于多语言文本分析、信息提取等任务。然而,由于训练数据限制,在非新闻领域的表现可能需要进一步评估。
umberto-wikipedia-uncased-v1 - UmBERTo模型专注意大利语NLP任务
GithubHuggingfaceUmBERTo开源项目意大利语标记模型词汇表语言模型
UmBERTo Wikipedia Uncased是基于Roberta的意大利语语言模型,利用SentencePiece和Whole Word Masking技术进行训练。该模型展示出在命名实体识别和词性标注任务中的高表现,尤其是在F1和精确度指标上。模型训练于小规模的意大利语Wikipedia语料库,为意大利语应用提供支持。可以在huggingface平台上获取并进行应用测试。
LLaMAntino-2-chat-13b-hf-UltraChat-ITA - 意大利语对话支持增强的大语言模型
AI研究GithubHuggingfaceLLaMAntino-2-chat-13b-UltraChat大语言模型开源项目意大利语模型自然语言处理
这是一个经过指令微调的意大利语大语言模型。使用QLora技术训练,并基于UltraChat数据集的意大利语版本。项目开发由Leonardo超级计算机支持,并适用于多种意大利语对话场景的云端推理。
bert-base-romanian-ner - 罗马尼亚语命名实体识别的高级BERT模型
GithubHuggingfaceRONECbert-base-romanian-ner命名实体识别开源项目文本预处理模型模型性能
此项目提供了一款经过微调的BERT模型,专注于罗马尼亚语命名实体识别,以优异的性能而著称。模型识别15种实体,如人物、地缘政治实体、地点、组织等,并基于RONEC v2.0数据集训练,拥有超过50万标记及80,283个独特实体。生成的标签采用BIO2格式,使其在命名实体识别任务中表现卓越。用户可通过Transformers库的NER管道或Python包便捷使用该模型。
xlm-roberta-large-ner-spanish - 基于XLM-Roberta-large的高性能西班牙语命名实体识别模型
CoNLL-2002GithubHuggingfaceXLM-RoBERTa命名实体识别开源项目模型自然语言处理西班牙语
xlm-roberta-large-ner-spanish是一个基于XLM-Roberta-large模型微调的西班牙语命名实体识别(NER)模型。该模型在CoNLL-2002数据集的西班牙语部分上训练,在测试集上实现了89.17的F1分数,展现出优秀的性能。此模型能够有效识别文本中的人名、地名、组织机构等命名实体,为西班牙语自然语言处理任务提供了有力工具。
xlm-roberta-xxl - 基于2.5TB数据训练的100语言自然语言处理模型
GithubHuggingfaceXLM-RoBERTa-XL多语言模型开源项目机器学习模型自然语言处理预训练模型
XLM-RoBERTa-XXL是一个基于2.5TB CommonCrawl数据预训练的多语言Transformer模型,支持100种语言的自然语言处理任务。通过掩码语言建模技术实现句子的双向表示学习,适用于序列分类、标记分类、问答等下游任务的微调,可应用于多语言文本分析和跨语言任务场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号