Project Icon

EnvironmentalBERT-environmental

BERT模型在ESG环境文本分类领域的创新应用

EnvironmentalBERT-environmental是一个针对ESG领域环境文本分类的优化BERT模型。通过2000条环境数据集的微调,该模型能有效识别环境相关文本。它为研究人员提供了ESG分析和环境行为研究的有力工具,支持文本分类pipeline,操作简便。这一创新为ESG评估带来了精确的NLP解决方案,推动了环境、社会和治理领域的量化分析。

GritLM-7B - 开源大语言模型在文本生成和分类任务中展现突出表现
GithubGritLM-7BHuggingfaceMTEB开源项目机器学习模型模型评估自然语言处理
GritLM-7B在文本分类、检索和聚类等多项任务中表现优秀。实测数据显示,模型在AmazonPolarity分类任务达到96.52%准确率,Banking77分类达到88.47%准确率。此外,模型还集成了文本相似度计算、排序和聚类分析等功能,可应用于多样化的自然语言处理场景。
bert-base-uncased-emotion - 情感数据集的高效文本分类模型
F1分数GithubHuggingfacebert-base-uncased-emotion准确率开源项目情感分析文本分类模型
bert-base-uncased模型针对情感数据集的微调结果显示,其在准确率和F1分数分别达到94.05%和94.06%。借助PyTorch和HuggingFace平台,该模型实现高效的情感文本分类,适用于社交媒体内容分析,特别是在Twitter环境中,为数据科学家和开发人员提供情感解析的精确工具。
Text-Moderation - 基于Deberta-v3的多分类文本审核系统
AutotrainDeBERTaGithubHuggingface内容分类开源项目文本审核模型自然语言处理
Text-Moderation采用Deberta-v3架构开发的文本分类模型,通过九类标签对文本内容进行审核分类。模型可识别包括性内容、仇恨言论、暴力描述、骚扰行为和自残倾向等敏感信息,并为每个类别提供概率评分。该模型实现了75%的分类准确率,主要支持英语文本的审核工作,可应用于内容审核和文本管理场景。
bert_uncased_L-2_H-128_A-2 - BERT微型模型:适用于资源受限环境的NLP解决方案
BERTGithubHuggingface开源项目机器学习模型模型压缩知识蒸馏自然语言处理
BERT微型模型是为计算资源受限环境设计的小型自然语言处理模型。它在保留BERT核心功能的同时,显著减小了模型规模。该模型在多项NLP任务中展现出优秀性能,特别适合知识蒸馏场景。它为研究人员和开发者提供了在有限资源条件下进行NLP研究和应用的高效选择。
bert-base-uncased-emotion - BERT模型用于情感分析的优化与应用
GithubHuggingfacePyTorch Lightningbert-base-uncased-emotion开源项目情感分析情感类别数据集模型
该项目基于bert-base-uncased模型,并使用PyTorch Lightning技术在一个情感数据集上进行了微调,支持文本分类和情感分析。训练参数包括128的序列长度、2e-5的学习率、32的批处理大小和4个训练周期,运行在两块GPU上。尽管模型尚未最优化,但在实际应用中显示出一定效果,达到了0.931的验证精度。更多项目详情可以通过nlp viewer查看。
deberta-v3-large-zeroshot-v1 - 强大高效的零样本文本分类能力
DeBERTa-v3GithubHuggingface开源项目文本分类模型模型训练自然语言推理零样本分类
模型适用于零样本分类,通过将文本分类任务转换为'真假'判定任务达到自然语言推理效果。使用Hugging Face pipeline实现,较现有模型表现优异。基于27项任务和310类文本进行训练,专注'Entailment'与'Not_Entailment'的二分类,且在多种文本分类场景中表现灵活。模型为开源,受到MIT许可证保护。
bert-small - 轻量级BERT模型用于下游NLP任务优化
BERTGithubHuggingface人工智能开源项目模型知识蒸馏自然语言处理预训练模型
bert-small是Google BERT官方仓库转换的小型预训练模型,属于紧凑型BERT变体系列。该模型采用4层结构和512维隐藏层,为自然语言处理研究提供轻量级解决方案。在自然语言推理等任务中,bert-small展现出优秀的泛化能力,有助于推进NLI研究beyond简单启发式方法。作为下游任务优化的理想选择,bert-small为NLP领域带来新的研究与应用可能。
BERTopic - 高效的Transformers主题建模,支持多种模式
BERTopicGithubPythonc-TF-IDFtransformers主题建模开源项目
BERTopic是一种利用Transformers和c-TF-IDF进行主题建模的技术,能够生成易于解释的密集主题聚类,同时保留关键词描述。该项目支持多种主题建模方法,如有监督、半监督和无监督模式,具有模块化和高扩展性。丰富的可视化功能和多种表示方法进一步支持深入分析。BERTopic还兼容多种嵌入模型,并支持多语言处理,适应不同应用场景。
my_awesome_model - DistilBERT微调的高效文本分类模型
DistilBERTGithubHugging FaceHuggingface开源项目机器学习模型模型微调自然语言处理
my_awesome_model是一个基于distilbert-base-uncased微调的文本分类模型。该模型在未知数据集上训练,经过3轮迭代后,训练损失降至0.0632,验证损失为0.2355,训练准确率达92.95%。模型采用Adam优化器和多项式衰减学习率。虽然缺乏具体任务信息,但其性能表现显示了良好的文本分类潜力。
distilbert-base-multilingual-cased-sentiment - 多语种情感分析模型的高效文本分类能力
Amazon评论GithubHuggingfacedistilbert-base-multilingual-cased-sentiment开源项目情感分析文本分类机器学习模型
本项目基于distilbert-base-multilingual-cased模型进行微调,在amazon_reviews_multi数据集上实现了优异的文本分类效果,准确率和F1值均为0.7648。模型通过优化训练参数和分布式数据处理,实现高效运行,适合多语言情感分析应用场景,可用于全球市场的用户评价分析。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号