Project Icon

opus-mt-da-de

基于Transformer架构的丹麦语-德语机器翻译模型

opus-mt-da-de是一个开源的丹麦语到德语机器翻译模型,基于Transformer架构设计。该模型使用OPUS数据集训练,经过规范化和SentencePiece预处理。在Tatoeba测试集上,模型取得57.4的BLEU分数和0.740的chr-F分数,显示出良好的翻译效果。模型提供预训练权重下载,并附有测试集翻译结果供评估参考。

opus-mt-fi-en - 芬兰语-英语机器翻译的开源transformer模型
EnglishFinnishGithubHuggingfaceOPUSTatoeba-Challenge开源项目机器翻译模型
opus-mt-fi-en是一个基于transformer-align架构的芬兰语到英语翻译模型。该模型在多个新闻测试集上展现了优秀性能,BLEU评分最高达32.3。模型采用SentencePiece进行预处理,并在Tatoeba测试集上获得53.4的BLEU分数和0.697的chrF分数。这个开源项目为需要芬兰语到英语高质量翻译的应用场景提供了有力支持。
opus-mt-hu-en - 基于OPUS数据集的匈牙利语-英语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-hu-en开源项目数据集机器翻译模型自然语言处理
此项目为基于transformer-align架构的匈牙利语到英语机器翻译模型,采用OPUS数据集训练。模型使用normalization和SentencePiece进行预处理,在Tatoeba测试集上获得52.9的BLEU分数和0.683的chr-F分数。项目提供模型权重、测试集翻译结果及评估数据下载。
opus-mt-en-ca - transformer-align架构的英语-加泰罗尼亚语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-en-ca开源项目机器翻译模型模型评估语言对
opus-mt-en-ca是基于transformer-align架构的英语-加泰罗尼亚语机器翻译模型。该模型利用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到47.2的BLEU分数和0.665的chr-F分数。模型采用Apache-2.0开源许可证,支持从英语翻译到加泰罗尼亚语。提供原始权重和测试集译文下载,方便评估模型性能和进行深入分析。
opus-mt-ca-es - 加泰罗尼亚语至西班牙语的开源翻译工具
GithubHuggingfaceopus-mt-ca-es基准测试开源项目模型翻译预处理
这是一个开放源代码的加泰罗尼亚语到西班牙语翻译模型,采用transformer-align架构,具备良好性能。通过OPUS数据集和SentencePiece进行预处理,提供高质量且一致的翻译结果。支持下载模型权重和测试集,方便评估应用于语言转换需求。
Opus-MT - 多语言神经机器翻译的开源框架
GithubMarian-NMTOPUS-MT多语言开源开源项目机器翻译
Opus-MT是一个开源的神经机器翻译项目,基于Marian-NMT框架开发。该项目利用OPUS数据集训练模型,结合SentencePiece分词和eflomal词对齐技术,提供多语言翻译功能。Opus-MT支持基于Tornado的Web应用和WebSocket服务两种部署方式,并提供大量预训练模型供用户下载。在Tiyaro.ai平台上,Opus-MT部署了543个在线演示API,方便用户体验。这个项目致力于为全球用户提供开放、便捷的翻译服务。
opus-mt-en-el - 英语到希腊语的开放源代码翻译模型,基于高效的自然语言处理技术
BLEUGithubHuggingfaceSentencePieceopus-mt-en-el开源项目模型翻译
项目提供从英语到希腊语的翻译模型,使用OPUS数据集和transformer-align模型进行训练,并包含预处理步骤如规范化和SentencePiece。用户可以下载原始模型权重和测试集合译文,模型在BLEU评分中取得56.4的成绩,强调翻译的准确性和流畅性。
opus-mt-vi-en - 基于Transformer架构的越南语英语双向翻译模型
EnglishGithubHuggingfaceOPUSTatoeba-ChallengeVietnamese开源项目机器翻译模型
opus-mt-vi-en是一个基于transformer-align架构的越南语-英语机器翻译模型。该模型在Tatoeba测试集上实现了42.8的BLEU分数和0.608的chrF分数。模型采用normalization和SentencePiece进行预处理,支持越南语和英语间的双向翻译。用户可通过官方链接获取模型权重和测试数据集。
opus-mt-tc-big-en-pt - 从英译葡的先进神经机器翻译模型
GithubHuggingfaceMarian NMTOPUS-MT句子标记开源项目机器翻译模型神经机器翻译
该开源项目提供的神经机器翻译模型,旨在高效地将英语翻译为葡萄牙语。作为OPUS-MT项目的一部分,模型采用Marian NMT框架训练,并转化到PyTorch以兼容Transformers库。利用flores101-devtest等高质量数据集进行训练与评估,提供多语言目标支持,可应用于多种翻译场景。通过简单的Python示例代码,用户可以快速上手执行翻译任务。项目获得了欧盟资助,并得到了CSC -- IT Center for Science的支持。
opus-mt-en-ru - 开源英俄翻译模型高性能机器翻译
BLEU评分GithubHuggingfaceopus-mt-en-ru开源项目机器翻译模型英俄翻译语言模型
opus-mt-en-ru是一个开源的英语到俄语机器翻译模型,基于transformer-align架构。该模型在newstest2012测试集上达到31.1的BLEU分数,展现出较好的翻译性能。模型使用OPUS数据集训练,采用normalization和SentencePiece进行预处理。此外,该项目还提供了多个测试集的评估结果,便于用户了解模型在不同场景下的表现。
opus-mt-en-jap - 英日神经机器翻译模型:基于OPUS数据集的高效翻译工具
BLEU评分GithubHuggingfaceopus-mt-en-jap开源项目机器翻译模型英日翻译语言模型
opus-mt-en-jap是一个基于transformer架构的英日神经机器翻译模型。该模型在OPUS数据集上训练,采用SentencePiece进行预处理。在bible-uedin测试集上,模型获得了42.1的BLEU分数和0.960的chr-F分数,显示出优秀的翻译能力。这一开源项目为需要进行英日文本转换的研究人员和开发者提供了实用的工具,适用于文献翻译、跨语言交流等领域。作为高效的机器翻译和英日翻译工具,它为用户提供了强大的语言转换支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号