Project Icon

opus-mt-de-it

德语到意大利语的开源翻译模型

该开源项目使用transformer-align模型,提供德语到意大利语的高效翻译。通过Normalization和SentencePiece进行预处理,确保翻译的精准性和流畅性。用户可下载模型原始权重和测试集进行评估。模型在Tatoeba数据集上的评估显示,BLEU得分为45.3,chr-F得分为0.671,表现出良好的翻译性能。

opus-mt-es-ca - 西班牙语到加泰罗尼亚语的开源机器翻译项目
GithubHuggingfacespa-cat句子片段基准测试开源项目模型翻译语言对
该开源项目实现西班牙语到加泰罗尼亚语翻译,使用transformer-align模型,并通过标准化和SentencePiece (spm32k)方法预处理数据。在Tatoeba测试集上,系统取得了BLEU 68.9和chr-F 0.832的高分,展现出良好翻译性能。可下载原始模型权重和测试集翻译文件,通过OPUS页面获取更多信息。
opus-mt-en-az - 提供英语到阿塞拜疆语的开源翻译模型
AzerbaijaniBLEU评分EnglishGithubHuggingfaceSentencePiecetranslation开源项目模型
该开源项目提供了一种从英语到阿塞拜疆语的翻译工具,使用transformer-align模型进行语言转换。其运用了规范化与SentencePiece技术,确保翻译的准确性。根据Tatoeba测试集评估,该模型取得了18.6的BLEU分数及0.477的chr-F分数。用户可以通过链接下载模型权重和翻译测试结果,项目遵循Apache 2.0协议,适用于多个应用场景。
opus-mt-uk-en - 乌克兰语至英语的开源神经机器翻译模型
GithubHuggingfaceOPUStransformer-align乌克兰语开源项目机器翻译模型英语
opus-mt-uk-en是一个开源的乌克兰语到英语神经机器翻译模型,基于transformer-align架构开发。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到了64.1的BLEU分数和0.757的chr-F分数,显示出良好的翻译效果。研究者可以下载预训练权重和测试集结果进行进一步评估和应用。
OPUS-MT-train - 用于训练多语言神经机器翻译模型的开源工具集
GithubOpus-MT多语言翻译开源软件开源项目机器翻译模型训练
OPUS-MT-train是一个开源的神经机器翻译模型训练工具集。它基于MarianNMT和OPUS数据集,提供了模型训练、评估和发布的完整脚本。该项目包含丰富的预训练模型,支持多语言翻译,并附有详细文档和教程。OPUS-MT-train适用于CSC HPC集群环境,包含了安装、设置和使用的详细说明。它还提供了低资源语言模型训练和Tatoeba翻译挑战等教程,致力于推动神经机器翻译技术的普及,为研究人员和开发者提供了实用的工具,有助于推进神经机器翻译技术的研究和应用。
opus-mt-mul-en - Transformer架构的多语种英语神经机器翻译模型
BLEU评分GithubHuggingfaceOPUS多语言模型开源项目机器翻译模型语言对
opus-mt-mul-en是基于Transformer架构的多语种到英语神经机器翻译模型。该模型支持200多种语言翻译为英语,覆盖范围广泛。在多个标准测试集上表现优异,尤其擅长欧洲语言翻译。模型采用SentencePiece分词技术,能够处理低资源语言,是一款功能强大的通用多语言翻译工具。
opus-mt-en-et - 英语至爱沙尼亚语神经机器翻译模型
GithubHuggingfaceopus-mt开源项目数据集机器翻译模型模型评估语言模型
该英语至爱沙尼亚语(en-et)翻译模型基于transformer-align架构构建,使用OPUS数据集训练。模型采用normalization和SentencePiece预处理技术,在Tatoeba、newsdev2018和newstest2018等测试集上分别获得了54.0、21.8和23.3的BLEU评分。模型提供预训练权重及相关评估数据下载。
opus-mt-en-hi - 开源英语-印地语Transformer机器翻译模型
GithubHuggingfaceOPUSTatoeba-Challenge印地语开源项目机器翻译模型英语
opus-mt-en-hi是OPUS项目开发的英语到印地语机器翻译模型,基于Transformer架构。模型在Tatoeba测试集上获得16.1 BLEU分数和0.447 chrF分数。它采用SentencePiece进行预处理,适用于多种翻译任务。作为开源资源,该模型为自然语言处理研究和应用开发提供了有价值的工具。
opus-mt-ko-en - 基于transformer-align的开源韩英机器翻译模型
GithubHuggingfaceOPUSTatoebatransformer-align开源项目机器翻译模型韩英翻译
opus-mt-ko-en是一个开源的韩英机器翻译模型,采用transformer-align架构。模型在Tatoeba测试集上获得41.3 BLEU分数和0.588 chrF分数。它支持韩语(包括谚文、拉丁文和汉字)到英语的翻译,使用normalization和SentencePiece进行预处理。该项目提供模型权重、测试集翻译结果和评估数据,可用于研究和实际应用。
opus-mt-en-fi - 开源神经机器翻译模型实现英语到芬兰语的准确转换
BLEU评分GithubHuggingfaceOPUS-MT开源项目机器翻译模型英语到芬兰语语言模型
opus-mt-en-fi是一个开源的英语到芬兰语翻译模型,基于transformer架构。该模型使用OPUS数据集和bt-news数据进行训练,采用normalization和SentencePiece进行预处理。在newstest2019-enfi测试集上,模型实现了25.7的BLEU分数和0.578的chr-F分数,显示出较高的翻译准确度。模型提供原始权重下载和测试集翻译结果,方便研究者和开发者使用和评估。
opus-mt-ca-en - 基于Transformer架构的加泰罗尼亚语-英语机器翻译模型
GithubHuggingfaceopus-mt-ca-en加泰罗尼亚语开源项目机器翻译模型模型评估英语
该模型采用transformer-align架构,实现加泰罗尼亚语到英语的翻译功能。模型使用normalization和SentencePiece进行预处理,在Tatoeba测试集达到51.4 BLEU评分。作为OPUS项目的组成部分,模型开放训练权重下载及测试评估数据,可用于加泰罗尼亚语-英语的自动翻译场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号