Project Icon

opus-mt-en-el

英语到希腊语的开放源代码翻译模型,基于高效的自然语言处理技术

项目提供从英语到希腊语的翻译模型,使用OPUS数据集和transformer-align模型进行训练,并包含预处理步骤如规范化和SentencePiece。用户可以下载原始模型权重和测试集合译文,模型在BLEU评分中取得56.4的成绩,强调翻译的准确性和流畅性。

opus-mt-en-az - 提供英语到阿塞拜疆语的开源翻译模型
AzerbaijaniBLEU评分EnglishGithubHuggingfaceSentencePiecetranslation开源项目模型
该开源项目提供了一种从英语到阿塞拜疆语的翻译工具,使用transformer-align模型进行语言转换。其运用了规范化与SentencePiece技术,确保翻译的准确性。根据Tatoeba测试集评估,该模型取得了18.6的BLEU分数及0.477的chr-F分数。用户可以通过链接下载模型权重和翻译测试结果,项目遵循Apache 2.0协议,适用于多个应用场景。
opus-mt-en-ar - 英语到阿拉伯语的开源神经机器翻译模型
GithubHuggingfaceOPUSTatoeba开源项目机器翻译模型英语阿拉伯语
opus-mt-en-ar是Helsinki-NLP团队开发的英语到阿拉伯语翻译模型。这个基于Transformer的模型支持包括现代标准阿拉伯语在内的多种阿拉伯语变体,使用SentencePiece进行分词,并要求输入特定的语言标记。在Tatoeba测试集上,模型获得了14.0的BLEU分数和0.437的chrF值,显示了其在英阿翻译任务上的性能。
opus-mt-hi-en - 基于OPUS数据集的印地语-英语开源机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-hi-en开源项目数据集机器翻译模型语言模型
opus-mt-hi-en是一个开源的印地语到英语机器翻译模型,基于transformer-align架构构建。该模型使用OPUS数据集训练,采用规范化和SentencePiece进行预处理。在Tatoeba测试集上,模型达到40.4的BLEU分数。项目提供预训练权重下载,便于用户部署和使用。此外,模型还在newsdev2014和newstest2014等测试集上进行了评估,为研究人员提供了性能参考。
opus-mt-en-et - 英语至爱沙尼亚语神经机器翻译模型
GithubHuggingfaceopus-mt开源项目数据集机器翻译模型模型评估语言模型
该英语至爱沙尼亚语(en-et)翻译模型基于transformer-align架构构建,使用OPUS数据集训练。模型采用normalization和SentencePiece预处理技术,在Tatoeba、newsdev2018和newstest2018等测试集上分别获得了54.0、21.8和23.3的BLEU评分。模型提供预训练权重及相关评估数据下载。
opus-mt-en-jap - 英日神经机器翻译模型:基于OPUS数据集的高效翻译工具
BLEU评分GithubHuggingfaceopus-mt-en-jap开源项目机器翻译模型英日翻译语言模型
opus-mt-en-jap是一个基于transformer架构的英日神经机器翻译模型。该模型在OPUS数据集上训练,采用SentencePiece进行预处理。在bible-uedin测试集上,模型获得了42.1的BLEU分数和0.960的chr-F分数,显示出优秀的翻译能力。这一开源项目为需要进行英日文本转换的研究人员和开发者提供了实用的工具,适用于文献翻译、跨语言交流等领域。作为高效的机器翻译和英日翻译工具,它为用户提供了强大的语言转换支持。
opus-mt-gl-pt - 加利西亚语与葡萄牙语翻译模型
BLEUGithubHuggingfaceglg-por加利西亚语开源项目模型翻译葡萄牙语
Opus-MT-GL-PT项目是一个开源翻译模型,专注于加利西亚语和葡萄牙语的翻译。该模型使用transformer-align架构,并结合SentencePiece预处理技术,在Tatoeba测试集上获得了57.9的BLEU分数,表现出良好的翻译性能。用户可以下载原始模型权重和测试集进行进一步的评估和使用。
opus-mt-de-es - 德语到西班牙语的智能翻译工具,支持更高的翻译准确性
BLEU评分GithubHuggingfaceopus-mt-de-es开源项目模型翻译模型语言对预处理
该开源项目通过使用transformer-align模型,将德语翻译为西班牙语,依托opus数据集,进行标准化和SentencePiece的预处理,提升翻译的准确性。用户可以下载模型的原始权重并查看相应的翻译测试集及评分,以了解其性能。在Tatoeba.de.es测试集中获得了48.5分的BLEU评分和0.676的chr-F得分,其高效性能在翻译领域具备一定的竞争力。
opus-mt-en-nl - 基于OPUS数据集的英荷双语机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTTransformer开源项目机器翻译模型英语到荷兰语
opus-mt-en-nl是一个英语到荷兰语的机器翻译模型,基于transformer-align架构构建。该模型利用OPUS数据集训练,并应用了normalization和SentencePiece预处理技术。在Tatoeba测试集上,模型达到了57.1的BLEU分数和0.730的chr-F分数,显示出较高的翻译质量。模型提供了原始权重和测试集翻译结果的下载,方便研究者进行评估和应用。
opus-mt-tc-big-tr-en - OPUS-MT 项目开源的土耳其语-英语神经机器翻译模型
GithubHuggingfaceOPUS-MTtransformer土耳其语开源项目机器翻译模型英语
opus-mt-tc-big-tr-en 是 OPUS-MT 项目开发的土耳其语到英语神经机器翻译模型。该模型基于 Marian NMT 框架训练,并转换为 PyTorch 格式以兼容 Hugging Face transformers 库。在多个测试集上表现优异,Tatoeba 测试集上 BLEU 分数达 57.6。模型采用 transformer-big 架构,使用 OPUS 和 Tatoeba Challenge 数据训练,为研究人员和开发者提供了高质量的开源翻译工具。
opus-mt-tc-base-en-sh - 多语言神经机器翻译模型,支持英-塞尔维亚-克罗地亚语转换
GithubHuggingfaceMarianNMTOPUS-MT开源项目机器翻译模型神经网络语言模型
该项目提供的神经机器翻译模型,支持从英语到塞尔维亚-克罗地亚语及其他语言的翻译。采用Marian NMT框架训练,使用transformers库转换为pyTorch格式。此模型由赫尔辛基大学开发,数据集来自OPUS项目,并采用SentencePiece进行预处理。适用于文本翻译和生成,包含代码示例与评估细节,遵循CC-BY-4.0许可。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号