Project Icon

opus-mt-en-es

基于Transformer的英西机器翻译模型

opus-mt-en-es是一个开源的英语到西班牙语机器翻译模型,基于Transformer架构。该模型在新闻测试集上BLEU分数介于30-39之间,在Tatoeba测试集上BLEU分数达54.9,chrF分数为0.721。模型采用SentencePiece进行预处理,适用于各种英西翻译任务。项目开源于Hugging Face,提供模型权重下载。模型由Helsinki-NLP团队开发,使用OPUS平行语料库训练。除了高性能表现外,opus-mt-en-es还提供了完整的测试集翻译结果和评估分数,便于研究人员进行比较和分析。该模型适用于需要高质量英西翻译的各种应用场景。

TransformerHub - 实现与参考多种Transformer模型
BERTGPTGithubTransformerTransformerHubViT开源项目
此项目实现了多种Transformer架构,包括seq2seq、仅编码器、仅解码器和统一模型,旨在提高编程技能并提供深度学习参考。特色包括多种Attention模块、位置嵌入和采样方法,当前进展是实现DINO模型。项目受到多个开源项目的启发和支持。
v3_1_pt_ep1_sft_5_based_on_llama3_1_8b_final_data_20241019 - 探索先进的自然语言处理开源模型及其实际应用
GithubHuggingfacetransformers开源项目模型模型卡环境影响训练细节语言模型
了解先进自然语言处理开源模型的信息,包括用途、评估方法及风险提示。虽然详细信息未完全披露,但以上内容可为开发和应用提供重要参考。
switch-base-128 - 探索语言模型优化与参数缩放的最新进展
GithubHuggingfaceSwitch Transformers专家开源项目模型混合专家蒙面语言建模语言模型
Switch Transformers采用专家混合(MoE)模型架构,针对掩码语言模型(MLM)任务进行训练。该模型使用稀疏多层感知器层取代传统的前馈层,提升了训练效率。在Colossal Clean Crawled Corpus上完成了高达万亿参数的预训练,表现出优于T5的微调效果,并实现了相较于T5-XXL模型的四倍加速,适合需要高效语言模型的应用。
mbart-large-50-many-to-one-mmt - 支持50种语言直接互译的多语言机器翻译模型
GithubHugging FaceHuggingfacemBART-50多语言机器翻译开源项目模型神经网络模型自然语言处理
mbart-large-50-many-to-one-mmt是一个基于mBART-large-50微调的多语言机器翻译模型,支持50种语言之间的直接互译。该模型无需中间语言,使用简单,只需几行代码即可实现翻译。它在处理低资源语言和长文本方面表现优异,适用于跨语言交流和全球化业务场景。模型覆盖多个语系,包括印欧、亚非和阿尔泰语系等,为用户提供全面的多语言翻译解决方案。
transformers - 机器学习库,覆盖文本、视觉与音频处理
GithubHugging Face人工智能多模态开源项目机器学习自然语言处理
探索🤗 Transformers——一个功能全面的机器学习库,覆盖文本、视觉与音频处理。该库提供数千种可对接JAX、PyTorch或TensorFlow的预训练模型,适用于多种语言处理与多模态任务。主要功能包括: - 文本分类 - 信息提取 - 问答系统 - 摘要生成 - 翻译 - 文本生成 此外,还能处理表格问答、OCR及视觉问答等多模态任务。Transformers库易于使用,支持模型间的快速切换与无缝整合。
happy-transformer - 便捷调优与推理NLP Transformer模型
GithubHappy TransformerNLP开源项目文本分类文本生成词预测
Happy Transformer提供简单的方法来调优和推理NLP Transformer模型,主要功能包括DeepSpeed训练、Apple的MPS训练及推理、WandB训练追踪以及直接推送模型到Hugging Face的Model Hub。支持的任务涵盖文本生成、文本分类、单词预测、问答、文本到文本、下一句预测和标记分类。
CTranslate2 - 高效的Transformer模型推理库,提供多种性能优化方案
CTranslate2Github并行执行开源项目性能优化模型压缩转换器模型
CTranslate2是一个用于Transformer模型高效推理的C++和Python库,通过权重量化、层融合、批次重排序等技术,显著提升CPU和GPU上的执行速度并减少内存占用。支持多种模型类型,包括编码器-解码器、仅解码器和仅编码器模型,兼容OpenNMT-py、OpenNMT-tf、Fairseq等框架。其主要特点包括自动CPU检测、代码分发、并行和异步执行以及动态内存使用。
Transformer-TTS - 神经语音合成系统
GithubPyTorchTacotronTransformer-TTS开源项目神经网络语音合成
Transformer-TTS,一个基于Pytorch的高效神经语音合成系统。它使用Transformer网络,且训练速度是传统seq2seq模型的3到4倍。不仅提供预训练模型,其合成语音质量经实验证明优异。同时,项目支持自定义学习模型及策略,包括Noam式预热衰减学习率及关键的梯度裁剪等,是语音合成研究的理想选择。
paraphrase-multilingual-mpnet-base-v2 - 跨语言句子向量化模型支持聚类和语义检索
GithubHuggingfacesentence-transformers多语言模型开源项目文本嵌入模型自然语言处理语义搜索
paraphrase-multilingual-mpnet-base-v2是一个基于sentence-transformers的多语言句子嵌入模型,支持50多种语言。它将句子和段落映射为768维向量,适用于聚类和语义搜索。模型易于使用,通过pip安装即可快速集成。在Sentence Embeddings Benchmark上表现出色,采用XLMRobertaModel和平均池化层结构,可有效处理不同长度的文本输入。
open-muse - 开源项目MUSE模型重现,用于高效文本到图像生成
GithubHuggingfaceMUSEVQGANopen-musetransformer开源项目
open-muse项目致力于重现Transformer MUSE模型,通过LAION-2B和COYO-700M数据集的训练,提供简单且可扩展的代码库。项目包括在Imagenet上训练类别条件模型、在CC12M上进行文本到图像实验,以及训练改进的VQGAN模型,所有结果将上传至Huggingface的openMUSE组织。支持的模型包括MaskGitTransformer和VQGAN,方便使用并可在Huggingface hub上加载和保存。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号