Project Icon

opus-mt-ko-en

基于transformer-align的开源韩英机器翻译模型

opus-mt-ko-en是一个开源的韩英机器翻译模型,采用transformer-align架构。模型在Tatoeba测试集上获得41.3 BLEU分数和0.588 chrF分数。它支持韩语(包括谚文、拉丁文和汉字)到英语的翻译,使用normalization和SentencePiece进行预处理。该项目提供模型权重、测试集翻译结果和评估数据,可用于研究和实际应用。

opus-mt-en-vi - 基于Transformer架构的英越翻译模型 实现37.2 BLEU评分
GithubHuggingfaceOPUSTatoeba开源项目机器翻译模型英语越南语
基于transformer-align架构开发的英语到越南语机器翻译模型,在Tatoeba测试集上达到37.2 BLEU分和0.542 chrF评分。模型使用SentencePiece技术进行分词预处理,支持英语到越南语(含喃字)的翻译功能。作为OPUS项目的组成部分,该模型于2020年6月发布,并提供完整的模型权重与测试数据集。
opus-mt-hi-en - 基于OPUS数据集的印地语-英语开源机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-hi-en开源项目数据集机器翻译模型语言模型
opus-mt-hi-en是一个开源的印地语到英语机器翻译模型,基于transformer-align架构构建。该模型使用OPUS数据集训练,采用规范化和SentencePiece进行预处理。在Tatoeba测试集上,模型达到40.4的BLEU分数。项目提供预训练权重下载,便于用户部署和使用。此外,模型还在newsdev2014和newstest2014等测试集上进行了评估,为研究人员提供了性能参考。
opus-mt-en-nl - 基于OPUS数据集的英荷双语机器翻译模型
BLEU评分GithubHuggingfaceOPUS-MTTransformer开源项目机器翻译模型英语到荷兰语
opus-mt-en-nl是一个英语到荷兰语的机器翻译模型,基于transformer-align架构构建。该模型利用OPUS数据集训练,并应用了normalization和SentencePiece预处理技术。在Tatoeba测试集上,模型达到了57.1的BLEU分数和0.730的chr-F分数,显示出较高的翻译质量。模型提供了原始权重和测试集翻译结果的下载,方便研究者进行评估和应用。
opus-mt-en-id - 英语至印尼语开源神经机器翻译模型
GithubHuggingfaceopus-mt-en-id开源项目数据集机器翻译模型模型评估自然语言处理
opus-mt-en-id是一个开源的英语到印尼语神经机器翻译模型,基于Transformer架构设计。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在Tatoeba测试集上,模型达到38.3 BLEU分和0.636 chr-F分的性能。项目提供预训练权重和测试集,方便研究人员进行评估和应用。
opus-mt-en-ru - 开源英俄翻译模型高性能机器翻译
BLEU评分GithubHuggingfaceopus-mt-en-ru开源项目机器翻译模型英俄翻译语言模型
opus-mt-en-ru是一个开源的英语到俄语机器翻译模型,基于transformer-align架构。该模型在newstest2012测试集上达到31.1的BLEU分数,展现出较好的翻译性能。模型使用OPUS数据集训练,采用normalization和SentencePiece进行预处理。此外,该项目还提供了多个测试集的评估结果,便于用户了解模型在不同场景下的表现。
opus-mt-fr-en - 基于OPUS数据集的法英神经机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-fr-en开源项目机器翻译模型模型评估语言对
opus-mt-fr-en是一个基于OPUS数据集训练的法语到英语神经机器翻译模型。该模型采用Transformer-align架构,使用规范化和SentencePiece进行预处理。在多个新闻测试集上,模型表现出稳定的性能,BLEU分数介于26.2至38.7之间。值得注意的是,在Tatoeba测试集上,模型达到了57.5的BLEU分数和0.720的chr-F值,展现了其在不同领域的翻译能力。
opus-mt-en-hu - 基于Transformer的英匈双语机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-en-hutransformer开源项目机器翻译模型自然语言处理
opus-mt-en-hu是一个英语到匈牙利语的机器翻译模型,采用Transformer架构设计。该模型基于OPUS数据集训练,应用了normalization和SentencePiece预处理技术。在Tatoeba测试集上,模型实现了40.1的BLEU分数和0.628的chr-F分数,表现出良好的翻译能力。模型提供了原始权重和测试集翻译结果供下载,便于进行评估和实际应用。
opus-mt-bg-en - 保加利亚语至英语的开源神经机器翻译模型
BLEU评分GithubHuggingfaceopus-mt-bg-en开源项目数据集机器翻译模型模型评估
opus-mt-bg-en是一个开源的保加利亚语到英语机器翻译模型,采用Transformer架构。该模型在OPUS数据集上训练,使用normalization和SentencePiece进行预处理。在Tatoeba测试集上,模型获得59.4的BLEU分数和0.727的chr-F分数。项目提供预训练权重、测试集翻译结果和评估分数,便于研究人员和开发者使用或进行性能评估。
opus-mt-ru-en - 赫尔辛基大学开发的俄英机器翻译模型
GithubHelsinki-NLPHuggingfaceTransformer模型俄语翻译开源项目机器翻译模型英语翻译
opus-mt-ru-en是赫尔辛基大学语言技术研究组开发的俄英机器翻译模型。该模型采用Transformer-align架构,在OPUS数据集上训练,在多个新闻测试集和Tatoeba测试集上均展现出优秀性能。研究人员可通过Hugging Face平台使用这一开源模型进行翻译和文本生成。模型采用CC-BY-4.0许可证,为自然语言处理研究提供了宝贵资源。
opus-mt-en-uk - 高效英乌翻译模型优化方案
BLEU评分GithubHuggingfaceopus-mt-en-uk开源项目模型翻译英文到乌克兰文
opus-mt-en-uk项目是一个专注于英乌机器翻译的开源模型,使用基于opus数据集的transformer-align技术,提供高效的语言翻译。模型经过规范化和SentencePiece预处理,在Tatoeba测试集中表现优异,BLEU得分为50.2,chr-F为0.674。项目提供原始模型权重和测试集结果供用户下载,以便进行实际应用和评估。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号