Project Icon

opus-mt-ko-en

基于transformer-align的开源韩英机器翻译模型

opus-mt-ko-en是一个开源的韩英机器翻译模型,采用transformer-align架构。模型在Tatoeba测试集上获得41.3 BLEU分数和0.588 chrF分数。它支持韩语(包括谚文、拉丁文和汉字)到英语的翻译,使用normalization和SentencePiece进行预处理。该项目提供模型权重、测试集翻译结果和评估数据,可用于研究和实际应用。

opus-mt-en-fi - 开源神经机器翻译模型实现英语到芬兰语的准确转换
BLEU评分GithubHuggingfaceOPUS-MT开源项目机器翻译模型英语到芬兰语语言模型
opus-mt-en-fi是一个开源的英语到芬兰语翻译模型,基于transformer架构。该模型使用OPUS数据集和bt-news数据进行训练,采用normalization和SentencePiece进行预处理。在newstest2019-enfi测试集上,模型实现了25.7的BLEU分数和0.578的chr-F分数,显示出较高的翻译准确度。模型提供原始权重下载和测试集翻译结果,方便研究者和开发者使用和评估。
opus-mt-en-et - 英语至爱沙尼亚语神经机器翻译模型
GithubHuggingfaceopus-mt开源项目数据集机器翻译模型模型评估语言模型
该英语至爱沙尼亚语(en-et)翻译模型基于transformer-align架构构建,使用OPUS数据集训练。模型采用normalization和SentencePiece预处理技术,在Tatoeba、newsdev2018和newstest2018等测试集上分别获得了54.0、21.8和23.3的BLEU评分。模型提供预训练权重及相关评估数据下载。
translation-model-opus - Helsinki-NLP团队开发的英西翻译模型 基于OPUS数据集
GithubHuggingfaceOPUSTatoeba开源项目机器翻译模型英语西班牙语
Helsinki-NLP团队基于transformer架构和OPUS数据集开发了这个英语到西班牙语的翻译模型。模型在多个新闻测试集上BLEU得分达30-39,Tatoeba测试集更高达54.9。采用normalization和SentencePiece预处理技术,为英西文本翻译需求提供了高质量的开源解决方案。
opus-mt-tc-big-tr-en - OPUS-MT 项目开源的土耳其语-英语神经机器翻译模型
GithubHuggingfaceOPUS-MTtransformer土耳其语开源项目机器翻译模型英语
opus-mt-tc-big-tr-en 是 OPUS-MT 项目开发的土耳其语到英语神经机器翻译模型。该模型基于 Marian NMT 框架训练,并转换为 PyTorch 格式以兼容 Hugging Face transformers 库。在多个测试集上表现优异,Tatoeba 测试集上 BLEU 分数达 57.6。模型采用 transformer-big 架构,使用 OPUS 和 Tatoeba Challenge 数据训练,为研究人员和开发者提供了高质量的开源翻译工具。
opus-mt-en-eu - 基于Transformer的英语-巴斯克语机器翻译模型 Tatoeba测试集BLEU 31.8
GithubHuggingfaceTatoeba-Challengetransformer-align巴斯克语开源项目机器翻译模型英语
opus-mt-en-eu是一个英语到巴斯克语的机器翻译模型,基于transformer-align架构构建。模型使用SentencePiece进行预处理,在Tatoeba测试集上达到31.8 BLEU分数和0.590 chr-F分数。由Helsinki-NLP开发并以Apache-2.0许可发布,适用于英语到巴斯克语的翻译任务。模型支持单向翻译,可应用于需要高质量英巴翻译的场景。
opus-mt-gmq-en - 北日耳曼语到英语的翻译模型
GithubHuggingfaceNorth Germanic languagesTatoeba-Challenge开源项目模型翻译英语
这是一个基于transformer模型的项目,专注于将北日耳曼语言翻译为英语。使用了SentencePiece进行预处理,支持多种语言,比如丹麦语、挪威语和瑞典语。在Tatoeba测试集上,获得了58.1的BLEU评分。用户可以通过提供的链接下载原始模型权重和测试集,适合对多语言翻译有研究兴趣的开发者和研究人员。
opus-mt-en-fr - 英法机器翻译模型在多领域测试中表现卓越
BLEU评分GithubHuggingfaceOPUS-MT开源项目机器翻译模型英法翻译语料库
opus-mt-en-fr是一个基于Transformer架构的英语到法语机器翻译模型。该模型使用OPUS数据集训练,经过normalization和SentencePiece预处理。在多个测试集上表现优异,包括新闻、讨论和Tatoeba等不同领域。模型在Tatoeba测试集上获得50.5的BLEU分数,展现了其在英法翻译任务中的高效性能。
Opus-MT - 多语言神经机器翻译的开源框架
GithubMarian-NMTOPUS-MT多语言开源开源项目机器翻译
Opus-MT是一个开源的神经机器翻译项目,基于Marian-NMT框架开发。该项目利用OPUS数据集训练模型,结合SentencePiece分词和eflomal词对齐技术,提供多语言翻译功能。Opus-MT支持基于Tornado的Web应用和WebSocket服务两种部署方式,并提供大量预训练模型供用户下载。在Tiyaro.ai平台上,Opus-MT部署了543个在线演示API,方便用户体验。这个项目致力于为全球用户提供开放、便捷的翻译服务。
opus-mt-en-hy - 英语到亚美尼亚语翻译模型,促进多语言交流
BLEUGithubHuggingfaceSentencePieceeng-hyetranslation开源项目模型
该项目提供英亚(英语-亚美尼亚语)翻译模型,基于Transformer-Align架构,结合SentencePiece处理,实现文本转换。其翻译能力在Tatoeba测试集中获得16.6的BLEU分数,表明良好的质量。用户可在GitHub页面查看详情,下载原始权重及测试集文件。项目采用Apache-2.0协议,便于开发者和研究人员在多语言环境中使用和再开发。
opus-mt-en-bg - 英语到保加利亚语的开源神经机器翻译模型
GithubHuggingfaceOPUSTatoeba保加利亚语开源项目机器翻译模型英语
opus-mt-en-bg是一个基于Transformer架构的英语到保加利亚语机器翻译模型。该模型在Tatoeba测试集上达到50.6的BLEU分数和0.680的chrF值。它使用SentencePiece进行预处理,支持保加利亚语的拉丁字母变体,需要添加目标语言标记。这个模型是Helsinki-NLP开发的Tatoeba-Challenge项目的一部分,为英语到保加利亚语的翻译提供了开源解决方案。模型采用了normalization和SentencePiece (spm32k,spm32k)预处理方法,需要在句子开头添加'>>id<<'形式的目标语言标记。用户可以下载原始权重、测试集翻译和评分结果。该项目遵循Apache-2.0许可协议,为研究人员和开发者提供了可靠的英语到保加利亚语机器翻译资源。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号