Project Icon

SmolLM-1.7B-Instruct

SmolLM-1.7B-Instruct 模型的技术特性与应用场景分析

SmolLM-1.7B-Instruct 是一款包含135M、360M和1.7B参数的小型语言模型,通过高质量数据集微调而成。v0.2版本在主题保持和回答提示方面表现优越。支持多种应用方式,包括本地和浏览器演示。但需注意,该模型可能并非完全精准,建议作为辅助工具应用于常识问答、创造性写作和基础编程等场景。

SmolLM-1.7B-Instruct 项目介绍

项目概述

SmolLM-1.7B-Instruct 是由 SmolLM 系列语言模型扩展而来的一个版本。SmolLM 系列提供三种尺寸的模型:135M、360M 和 1.7B 参数。该系列模型是基于 SmolLM-Corpus 进行预训练,包含了大量优质的教育和合成数据,专为大语言模型的训练而设计。具体细节可参考项目组的博客文章

在这个项目中,SmolLM-Instruct 是通过对已公开的数据集进行微调而开发出来的。

项目历史更新

SmolLM-1.7B-Instruct 的历史更新信息如下:

SmolLM-360M-Instruct (v0.2) 在 AlpacaEval 的表现优于其 v0.1 版本,有详细的数据可以在这里找到。

使用方式

本地应用

对于本地应用,项目提供在 MLC、GGUF 和 Transformers.js 格式的优化实现,还提供了快速的浏览器演示。这些可以在以下集合中找到:SmolLM本地集合。项目中注意到4bit量化会降低135M和360M模型的质量,因此使用q016对 MLC 和 ONNX/Transformers.js 检查点进行 WebGPU 演示。

建议使用的参数为:温度 (temperature) 0.2,top-p 0.9。

使用 Transformers 库

安装 Transformers 库后,通过以下代码可以快速加载和使用模型:

pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM-1.7B-Instruct"

device = "cuda" # 使用GPU或者用"cpu"使用CPU
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)

messages = [{"role": "user", "content": "What is the capital of France."}]
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))

终端对话

也可以使用 TRL CLI 在终端中与模型进行对话:

pip install trl
trl chat --model_name_or_path HuggingFaceTB/SmolLM-1.7B-Instruct --device cpu

模型局限性

需要注意的是,生成内容可能并不总是符合事实、逻辑一致或没有训练数据中的偏见。用户应将其作为辅助工具而非终极信息来源来使用。尽管这些模型可以处理一般知识问题、创意写作和基础的 Python 编程,但仅支持英语,对算术、编辑任务和复杂推理可能存在困难。更多关于模型能力的信息请参阅博客文章

训练参数

模型使用 alignment-handbook 根据变更日志中提到的数据集进行训练,参数如下(v0.2 大多源于 Zephyr Gemma 配方):

  • 1 个 epoch
  • 学习率 lr 1e-3
  • 余弦调度(cosine schedule)
  • 热身比例 0.1
  • 全局 batch size 262k tokens

详细的训练配方可以在此处找到:训练配方

引用信息

@misc{allal2024SmolLM,
      title={SmolLM - blazingly fast and remarkably powerful}, 
      author={Loubna Ben Allal and Anton Lozhkov and Elie Bakouch and Leandro von Werra and Thomas Wolf},
      year={2024},
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号