Project Icon

SmolLM-135M-Instruct

轻量级指令语言模型的高效实现

SmolLM-135M-Instruct是一个1.35亿参数的轻量级指令语言模型。经过高质量教育数据训练和公开数据集微调后,模型具备基础知识问答、创意写作和Python编程能力。支持MLC、GGUF等多种本地部署方案,可通过Transformers框架调用。v0.2版本进一步优化了对话质量和任务完成能力。

Infinity-Instruct-3M-0625-Yi-1.5-9B - 大规模指令调优模型无需人类反馈的创新
GithubHuggingfaceInfinity Instruct北京智源人工智能研究院开源项目无强化学习模型模型训练深度学习
Infinity-Instruct-3M-0625-Yi-1.5-9B是一个开放源码的指导调优模型,不依赖于人类反馈强化学习。模型通过在Infinity-Instruct-3M上的微调展现了优异的性能,特别是在AlpacaEval 2.0和MT-Bench评估中表现突出。近期发布的InfInstruct-Mistral-7B 0625等模型权重优化了训练效率。借助FlagScale等创新训练技术,该模型大幅降低了训练成本,擅长处理数学和代码指令,并具备强大的聊天功能。该模型仅限于学术研究使用,不适用于商业用途。
Qwen2-0.5B-Instruct - 轻量级高性能指令对话模型 提升自然语言处理能力
GithubHuggingfaceQwen2人工智能大语言模型开源项目模型深度学习自然语言处理
Qwen2-0.5B-Instruct是Qwen2大语言模型系列中的轻量级成员。该模型采用改进的Transformer架构,在语言理解、生成、多语言处理、编码、数学和推理等方面表现出色,超越多数同等规模的开源模型。经过大规模数据预训练和监督微调,Qwen2-0.5B-Instruct在多项基准测试中展现出优异性能,为开发者提供了一个高效且功能强大的自然语言处理工具。
Mistral-Large-Instruct-2407 - Mistral大语言模型在多语言理解与高级推理方面展现卓越性能
GithubHuggingfaceMistral-Large-Instruct人工智能授权函数调用多语言支持大语言模型开源项目模型
Mistral-Large-Instruct-2407作为一款基于123B参数构建的大规模语言模型,集成了多语言处理、代码编程和数学推理等核心功能。模型配备128k上下文窗口,支持80余种编程语言,同时提供函数调用与JSON输出特性。在MMLU测试中达到84.0%的优异成绩,MT Bench评分为8.63,彰显其在自然语言处理领域的实力。目前该模型已开放研究及非商用场景应用。
Phi-3.5-MoE-instruct - 轻量级高性能多语言开源模型
GithubHuggingfacePhi-3.5-MoE多语言开源项目推理能力模型语言模型长文本处理
Phi-3.5-MoE-instruct是一款高性能开源多语言模型。采用混合专家架构,仅用6.6B活跃参数即可实现优异性能。支持128K上下文长度,在推理、数学和代码生成等方面表现出色。模型专注高质量推理数据,经过严格微调和安全增强,适用于商业和研究领域。
Qwen2.5-1.5B-Instruct - 多语言支持的轻量级指令型语言模型
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目指令微调模型自然语言处理
Qwen2.5-1.5B-Instruct是Qwen2.5系列的指令型语言模型,拥有1.5B参数。它支持29种语言,能处理32,768个token的上下文并生成8192个token的文本。该模型在指令理解、长文本生成和结构化数据处理方面表现优异,尤其擅长编程和数学领域,可应用于多种自然语言处理任务。
Mistral-7B-Instruct-v0.3-GGUF - 高性能量化版指令微调大语言模型
GithubHuggingfaceMistral-7B-Instruct-v0.3大型语言模型开源项目提示模板模型硬件要求量化
Mistral-7B-Instruct-v0.3 GGUF是一系列针对不同硬件条件优化的量化模型。支持32k上下文长度、扩展词表和函数调用,适用于对话等交互任务。模型大小从2.72GB到14.5GB不等,提供多种精度选择,平衡性能和资源消耗。GGUF格式便于在各类设备上高效部署和使用。
SmolLM-1.7B - 小型化设计与处理能力兼备的语言模型,适用于多个应用场景
Cosmo-CorpusGithubHuggingfaceSmolLMTransformer开源项目模型生成模型语言模型
SmolLM系列语言模型基于Cosmo-Corpus高质量数据集开发,提供135M、360M和1.7B参数选项,表现出色的常识推理和广泛知识评估能力。模型通过多类型内容数据集训练,支持8位和bfloat16位精度,可在CPU和多GPU环境中运行。需注意,内容生成的准确性和一致性可能受限,仅供辅助使用。可通过HuggingFace平台便捷部署。
Llama-3.1-70B-Instruct - Meta推出的多语言大规模语言模型 支持商业与研究应用
GithubHuggingfaceMeta-Llama-3.1-70B多语言大语言模型开源项目指令微调模型预训练
Llama-3.1-70B-Instruct是Meta开发的多语言大型语言模型,支持8种语言,具有128k上下文窗口。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练,提升对话效果。支持文本和代码生成等自然语言任务,适用于商业和研究领域。该模型还可用于改进其他AI模型,包括合成数据生成和知识蒸馏。
Llama-3.1-405B-Instruct - Meta开发的多语言大规模语言模型 支持商业和研究应用
GithubHuggingfaceLLaMA 3.1Meta人工智能多语言大语言模型开源项目模型自然语言生成
Llama-3.1-405B-Instruct是Meta开发的多语言大规模语言模型系列之一。该模型支持英语、德语、法语等8种语言,具有128K上下文长度。通过监督微调和人类反馈强化学习,该模型旨在提供安全可靠的多语言对话能力。Llama-3.1-405B-Instruct适用于助手式聊天等自然语言生成任务,支持商业和研究应用。
Mistral-7B-Instruct-v0.1 - 多种推理方式支持的指令调优大语言模型
GithubHuggingfaceMistral-7B-Instruct-v0.1大语言模型开源项目指令微调机器学习模型自然语言处理
Mistral-7B-Instruct-v0.1是基于Mistral-7B-v0.1的指令调优大语言模型。该模型通过多种公开对话数据集微调,支持mistral_common、mistral_inference和transformers等多种推理方式。它采用分组查询注意力和滑动窗口注意力机制,结合字节回退BPE分词器,提供简单的指令格式,适用于对话生成任务。模型架构优化使其在保持高性能的同时,具备良好的通用性和易用性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号