Project Icon

llms

大型语言模型的原理与实践应用全面解析

本项目全面介绍大型语言模型(LLMs)的基本概念、应用场景和技术演进。内容涵盖统计语言模型、神经网络语言模型,以及基于Transformer的预训练模型如GPT和BERT等。系统讲解LLMs核心原理,并探讨模型评估、文本生成和提示工程等实用技术。同时展示LLMs在计算机视觉等领域的创新应用,通过理论与实践结合,为读者提供深入了解LLMs技术的全面指南。

Large Language Models (llms)

lms.png Source A Survey of Large Language Models

Content

  • What is a language model?
  • Applications of language models
  • Statistical Language Modeling
  • Neural Language Models (NLM)
  • Conditional language model
  • Evaluation: How good is our model?
  • Transformer-based Language models
  • Practical LLMs: GPT, BERT, Falcon, Llama, CodeT5
  • How to generate text using different decoding methods
  • Prompt Engineering
  • Fine-tuning LLMs
  • Retrieval Augmented Generation (RAG)
  • Ask almost everything (txt, pdf, video, etc.)
  • Evaluating LLM-based systems
  • AI Agents
  • LLMs for Computer vision (TBD)
  • Further readings

Introduction: What is a language model?

Simple definition: Language Modeling is the task of predicting what word comes next.

"The dog is playing in the ..."

  • park
  • woods
  • snow
  • office
  • university
  • Neural network
  • ?

The main purpose of Language Models is to assign a probability to a sentence, to distinguish between the more likely and the less likely sentences.

Applications of language models:

  1. Machine Translation: P(high winds tonight) > P(large winds tonight)
  2. Spelling correction: P(about fifteen minutes from) > P(about fifteen minuets from)
  3. Speech Recognition: P(I saw a van) > P(eyes awe of an)
  4. Authorship identification: who wrote some sample text
  5. Summarization, question answering, dialogue bots, etc.

For Speech Recognition, we use not only the acoustics model (the speech signal), but also a language model. Similarly, for Optical Character Recognition (OCR), we use both a vision model and a language model. Language models are very important for such recognition systems.

Sometimes, you hear or read a sentence that is not clear, but using your language model, you still can recognize it at a high accuracy despite the noisy vision/speech input.

The language model computes either of:

  • The probability of an upcoming word: $P(w_5 | w_1, w_2, w_3, w_4)$
  • The probability of a sentence or sequence of words (according to the Language Model): $P(w_1, w_2, w_3, ..., w_n)$

Language Modeling is a subcomponent of many NLP tasks, especially those involving generating text or estimating the probability of text.

The Chain Rule: $P(x_1, x_2, x_3, …, x_n) = P(x_1)P(x_2|x_1)P(x_3|x_1,x_2)…P(x_n|x_1,…,x_{n-1})$

$P(The, water, is, so, clear) = P(The) × P(water|The) × P(is|The, water) × P(so|The, water, is) × P(clear | The, water, is, so)$

What just happened? The Chain Rule is applied to compute the joint probability of words in a sentence.


Statistical Language Modeling:

n-gram Language Models

Using a large amount of text (corpus such as Wikipedia), we collect statistics about how frequently different words are, and use these to predict the next word. For example, the probability that a word w comes after these three words students opened their can be estimated as follows:

  • P(w | students opened their) = count(students opened their w) / count(students opened their)

The above example is a 4-gram model. And we may get:

  • P(books | students opened their) = 0.4
  • P(cars | students, opened, their) = 0.05
  • P(... | students, opened, their) = ...

We can conclude that the word “books” is more probable than “cars” in this context.

We ignored the previous context before "students opened their"

Accordingly, arbitrary text can be generated from a language model given starting word(s), by sampling from the output probability distribution of the next word, and so on.

We can train an LM on any kind of text, then generate text in that style (Harry Potter, etc.).

We can extend to trigrams, 4-grams, 5-grams, and N-grams.

In general, this is an insufficient model of language because the language has long-distance dependencies. However, in practice, these 3,4 grams work well for most of the applications.

Building Statistical Language Models:

Toolkits

  • SRILM is a toolkit for building and applying statistical language models, primarily for use in speech recognition, statistical tagging and segmentation, and machine translation. It has been under development in the SRI Speech Technology and Research Laboratory since 1995.
  • KenLM is a fast and scalable toolkit that builds and queries language models.

N-gram Models

Google's N-gram Models Belong to You: Google Research has been using word n-gram models for a variety of R&D projects. Google N-Gram processed 1,024,908,267,229 words of running text and published the counts for all 1,176,470,663 five-word sequences that appear at least 40 times.

The counts of text from the Linguistics Data Consortium LDC are as follows:

File sizes: approx. 24 GB compressed (gzip'ed) text files

Number of tokens:    1,024,908,267,229
Number of sentences:    95,119,665,584
Number of unigrams:         13,588,391
Number of bigrams:         314,843,401
Number of trigrams:        977,069,902
Number of fourgrams:     1,313,818,354
Number of fivegrams:     1,176,470,663

The following is an example of the 4-gram data in this corpus:

serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40

For example, the sequence of the four words "serve as the indication" has been seen in the corpus 72 times.

Limitations of Statistical Language models

Sometimes we do not have enough data to estimate. Increasing n makes sparsity problems worse. Typically we can’t have n bigger than 5.

  • Sparsity problem 1: count(students opened their w) = 0? Smoothing Solution: Add small 𝛿 to the count for every w in the vocabulary.
  • Sparsity problem 2: count(students opened their) = 0? Backoff Solution: condition on (opened their) instead.
  • Storage issue: Need to store the count for all n-grams you saw in the corpus. Increasing n or increasing corpus increases storage size.

Neural Language Models (NLM)

NLM usually (but not always) uses an RNN to learn sequences of words (sentences, paragraphs, … etc) and hence can predict the next word.

Advantages:

  • Can process variable-length input as the computations for step t use information from many steps back (eg: RNN)
  • No sparsity problem (can feed any n-gram not seen in the training data)
  • Model size doesn’t increase for longer input ($W_h, W_e, $), the same weights are applied on every timestep and need to store only the vocabulary word vectors.

nlm01.png

As depicted, At each step, we have a probability distribution of the next word over the vocabulary.

Training an NLM:

  1. Use a big corpus of text (a sequence of words such as Wikipedia)
  2. Feed into the NLM (a batch of sentences); compute output distribution for every step. (predict probability dist of every word, given words so far)
  3. Loss function on each step t cross-entropy between predicted probability distribution, and the true next word (one-hot)

Example of long sequence learning:

  • The writer of the books (is or are)?
  • Correct answer: The writer of the books is planning a sequel
  • Syntactic recency: The writer of the books is (correct)
  • Sequential recency: The writer of the books are (incorrect)

Disadvantages:

  • Recurrent computation is slow (sequential, one step at a time)
  • In practice, for long sequences, difficult_ to access information_ from many steps back

Conditional language model

LM can be used to generate text conditions on input (speech, image (OCR), text, etc.) across different applications such as: speech recognition, machine translation, summarization, etc.

clm.png


Evaluation: How good is our model?

Does our language model prefer good (likely) sentences to bad ones?

Extrinsic evaluation:

  1. For comparing models A and B, put each model in a task (spelling, corrector, speech recognizer, machine translation)
  2. Run the task and compare the accuracy for A and for B
  3. Best evaluation but not practical and time consuming!

Intrinsic evaluation:

  • Intuition: The best language model is one that best predicts an unseen test set (assigns high probability to sentences).
  • Perplexity is the standard evaluation metric for Language Models.
  • Perplexity is defined as the inverse probability of a text, according to the Language Model.
  • A good language model should give a lower Perplexity for a test text. Specifically, a lower perplexity for a given text means that text has a high probability in the eyes of that Language Model.

The standard evaluation metric for Language Models is perplexity Perplexity is the inverse probability of the test set, normalized by the number of words

preplexity02.png

Lower perplexity = Better model

Perplexity is related to branch factor: On average, how many things could occur next.


Transformer-based Language models

Instead of RNN, let's use attention Let's use large pre-trained models

  • What is the problem? One of the biggest challenges in natural language processing (NLP) is the shortage of training data for many distinct tasks. However, modern deep learning-based NLP models improve when trained on millions, or billions, of annotated training examples.

  • Pre-training is the solution: To help close this gap, a variety of techniques have been developed for training general-purpose language representation models using the enormous amount of unannotated text. The pre-trained model can then be fine-tuned on small data for different tasks like question answering and sentiment analysis, resulting in substantial accuracy improvements compared to training on these datasets from scratch.

The Transformer architecture was proposed in the paper Attention is All You Need, used for the Neural Machine Translation task (NMT), consisting of:

  • Encoder: Network that encodes the input sequence.
  • Decoder: Network that generates the output sequences conditioned on the input.

As mentioned in the paper:

"We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely"

The main idea of attention can be summarized as mentioned in the OpenAi's article:

"... every output element is connected to every input element, and the weightings between them are dynamically calculated based upon the circumstances, a process called attention."

Based on this architecture (the vanilla Transformers!), encoder or decoder components can be used alone to enable massive pre-trained generic models that can be fine-tuned for downstream tasks such as text classification, translation, summarization, question answering, etc. For Example:

  • "Pre-training of Deep Bidirectional Transformers for Language Understanding" BERT is mainly based on the encoder architecture trained on massive text datasets to predict randomly masked words and "is-next sentence" classification tasks.
  • GPT, on the other hand, is an auto-regressive generative model that is mainly based on the decoder architecture, trained on massive text datasets to predict the next word (unlike BERT, GPT can generate sequences).

These models, BERT and GPT for instance, can be considered as the NLP's ImageNET.

bertvsgpt.png

As shown, BERT is deeply bidirectional, OpenAI GPT is unidirectional, and ELMo is shallowly bidirectional.

Pre-trained representations can be:

  • Context-free: such as word2vec or GloVe that generates a single/fixed word embedding (vector) representation for each word in the vocabulary (independent of the context of that word at test time)
  • Contextual: generates a representation of each word based on the other words in the sentence.

Contextual Language models can be:

  • Causal language model (CML): Predict the next token passed on previous ones. (GPT)
  • Masked language model (MLM): Predict the masked token based on the surrounding contextual tokens (BERT)

💥 Practical LLMs

In this part, we are going to use different large language models

🚀 Hello GPT2

Open In Colab

GPT2 (a successor to GPT) is a pre-trained model on English language using a causal language modeling (CLM) objective, trained simply to predict the next

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号