Project Icon

mbart_ru_sum_gazeta

俄语新闻自动摘要的高效工具

MBARTRuSumGazeta是一个用于俄语新闻自动摘要的开源项目。该项目依托Gazeta数据集的训练模型,可以生成高质量的新闻摘要,有助于提高信息获取的效率。该工具尤其适合研究人员和记者等需要处理大量新闻信息的用户。虽然模型在Gazeta.ru上的表现最佳,但在其他新闻源可能会有域转移的现象。通过使用MBart模型及其训练方法,该项目确保了生成摘要的准确性。

text_summarization - 基于T5 Small的文本摘要模型
GithubHugging FaceHuggingfaceT5开源项目文本摘要机器学习模型自然语言处理
该项目是基于T5 Small模型的文本摘要工具,经过针对性微调后能生成简洁连贯的摘要。模型采用优化的超参数设置,适用于文档摘要和内容浓缩等场景。通过简单的Python代码即可调用,为NLP应用提供了便捷的文本摘要功能。模型使用批量大小为8,学习率为2e-5的超参数进行微调,在评估中实现了0.95的Rouge F1分数。它可以处理长文本输入,生成30到1000字之间的摘要。该工具为研究人员和开发者提供了一个易用的文本摘要解决方案。
distilbart-cnn-12-6 - BART模型压缩版本实现快速高效的文本摘要
BARTGithubHuggingface开源项目性能评估文本摘要模型模型压缩自然语言处理
distilbart-cnn-12-6是BART模型的压缩版本,专注于文本摘要任务。该模型通过减少参数量和优化推理时间,在保持高性能的同时提高了效率。与原始BART模型相比,distilbart-cnn-12-6在Rouge-2和Rouge-L评估指标上表现相当,且推理速度提升了1.24倍。这使得该模型特别适合需要快速生成高质量摘要的应用场景。
rubert-tiny-sentiment-balanced - 高效分析俄语短文本情感的专业工具
GithubHuggingfaceRuBERT俄语开源项目情感分析文本分类模型自然语言处理
rubert-tiny-sentiment-balanced是一个针对俄语短文本情感分类的微调模型。它将输入文本分为负面、中性和正面三类。该模型在多个平衡的俄语数据集上训练,提供了情感标签、分数和概率分布输出。模型在不同领域的测试集上展现了良好的性能,F1分数从0.50到0.98不等。用户可以通过简单的Python代码集成此模型,用于俄语文本的情感分析任务。
kobart-summary-v3 - 韩语文档摘要与报告生成的高效模型
BartForConditionalGenerationGithubHuggingfacekobarttransformers开源项目文档总结模型
kobart-summary-v3是一个针对韩语文档和报告的自动摘要生成模型。该模型通过优化训练数据提升了文本生成的简洁性和可读性,同时保持信息的完整性,适用于多种应用场景,如学术文献和大型文书的自动摘要生成。
summary-gpt-bot - 支持文本、URL、PDF和YouTube视频摘要的AI机器人
Azure OpenAIGithubOpenAISummary GPT BotTelegram bot开源项目文本摘要
AI驱动的Telegram机器人,支持文本、URL、PDF和YouTube视频摘要。可通过OpenAI GPT-4或Azure OpenAI服务部署,支持设置允许使用者列表,并可自定义环境变量以满足各种需求。
rubert-base-cased-russian-sentiment - 基于RuBERT的俄语短文本情感分析模型
GithubHuggingfaceRuBERT俄语多类分类开源项目情感分析文本分类模型
这是一个基于RuBERT的俄语情感分析模型,专门用于短文本的多类别情感分类。模型支持中性、积极和消极三种情感标签,可通过Python代码轻松调用。它在多个俄语数据集上进行了微调,涵盖新闻、评论和社交媒体文本。该模型为需要进行俄语文本情感分析的开发者和研究人员提供了一个实用的工具。
kobart-summarization - 基于BART架构的韩语新闻自动摘要模型
BARTGithubHuggingfaceNLP开源项目文本摘要机器学习模型韩语
kobart-summarization是一个专门用于韩语新闻文本自动摘要的开源模型。该模型基于BART架构,通过Hugging Face transformers库实现,提供简洁的Python接口。它支持快速文本编码和摘要生成,适用于新闻处理、内容分析等场景。开发者可以轻松使用预训练的tokenizer和模型进行文本摘要任务。项目已在GitHub开源,并提供在线demo供用户体验。
bart-large-xsum-samsum - 基于BART技术的高效对话文本自动摘要模型
BARTGithubHuggingface对话总结开源项目文本摘要机器学习模型自然语言处理
这是一个基于facebook/bart-large-xsum在Samsum数据集上微调的对话摘要模型。模型专注于对话文本自动摘要,在SAMSum Corpus测试集的ROUGE-1、ROUGE-2和ROUGE-L评估指标上分别达到53.31、28.36和44.10。开发者可通过Hugging Face Transformers框架快速部署使用此模型进行对话内容摘要。
pegasus-cnn_dailymail - 突破性混合训练文本摘要模型在新闻数据集实现44.16% ROUGE-1评分
GithubHuggingfacePegasus开源项目文本摘要机器学习模型模型训练自然语言处理
Pegasus是一个在C4和HugeNews混合数据集上训练的文本摘要模型。它采用15%-45%的动态间隔句子比率和20%的均匀噪声采样技术,经过150万步训练后在CNN/DailyMail数据集上实现了44.16%的ROUGE-1评分。该模型的随机采样和混合训练策略显著提升了文本摘要性能,为自动摘要技术带来了新的进展。
bart-large-xsum - 使用Bart大型模型进行高效文本总结
GithubHuggingfaceROUGE指标facebook/bart-large-xsum开源项目摘要数据集模型模型微调
本文介绍了facebook/bart-large-xsum模型在文本总结任务中的应用,评估了其在cnn_dailymail、xsum和samsum数据集上的性能。其中,在xsum数据集上表现尤为突出,ROUGE-1评分达到45.4525。此外,还介绍了模型的损失函数优化、生成文本长度及准确性的提升。更多信息及模型变体请参考相关文档。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号