Project Icon

robust-swedish-sentiment-multiclass

瑞典多标签情感分类器促进文本分析

该项目提供了一种经过精细调整的多标签情感分类器,基于Megatron-BERT-large-165K模型开发,对75K瑞典文本进行训练。此模型支持多种语言环境的文本分析任务,详情请参考KBLab博客。

sentiment-roberta-large-english - RoBERTa微调的通用英文情感分析模型
GithubHuggingfaceRoBERTaSiEBERT开源项目情感分析机器学习模型自然语言处理
sentiment-roberta-large-english是一个基于RoBERTa-large的微调模型,用于英文文本的二元情感分析。该模型在15个不同来源的数据集上进行了训练和评估,提高了对各种文本类型的泛化能力。在新数据上,其表现优于仅在单一类型文本上训练的模型,平均准确率为93.2%。模型可通过Hugging Face pipeline快速部署,也可作为进一步微调的基础。
twitter-xlm-roberta-base-sentiment-multilingual - XLM-RoBERTa模型在多语言推特情感分析中的应用
GithubHuggingfaceXLM-RoBERTasentiment analysistweetnlp多语言开源项目文本分类模型
本项目是基于cardiffnlp/twitter-xlm-roberta-base模型针对多语言推特情感分析进行的微调。模型在cardiffnlp/tweet_sentiment_multilingual数据集上训练,通过tweetnlp库实现。测试结果显示,模型在F1分数和准确率方面均达到约69%的性能。研究人员和开发者可使用简单的Python代码调用此模型,为多语言社交媒体内容分析提供了实用的解决方案。
bert-base-multilingual-uncased-sentiment - BERT多语言产品评论情感预测模型
GithubHuggingfacebert-base-multilingual-uncased产品评论准确率多语言模型开源项目情感分析模型
bert-base-multilingual-uncased-sentiment是一个基于BERT的多语言情感分析模型,支持英、荷、德、法、西、意六种语言的产品评论分析。模型通过1至5星评级预测评论情感,在大规模多语言产品评论数据集上训练。测试结果显示,模型在各语言上均达到较高的准确率,特别是在'差一星'的宽松评估标准下,准确率普遍超过93%。该模型可直接应用于目标语言的产品评论情感分析,也可作为相关任务的预训练模型进行进一步微调。
scandi-nli-large - 北欧语言自然语言推理模型的性能分析
GithubHuggingfaceScandiNLI丹麦语开源项目挪威语模型瑞典语自然语言推理
该模型针对丹麦语、挪威语和瑞典语进行了自然语言推理微调,适用于零样本分类任务,拥有多个版本。大模型在语言任务中成绩突出,MCC为73.70%,F1分数为74.44%,准确率达83.91%。基于NbAiLab/nb-bert-large模型,并综合多语言NLI数据集进行训练,实现了对北欧语言的全面支持,适用于多语言自然语言处理。
german-sentiment-bert - 基于BERT架构的德语情感分析模型
BERTGithubHuggingfacePython开源项目德语情感分类机器学习模型自然语言处理
该项目开发了一个基于BERT架构的德语情感分类模型。模型在184万个德语样本上训练,数据来源包括社交媒体和各类评论。提供Python包便于使用,支持情感预测和概率输出。在多个数据集上表现优异,最高F1分数达0.9967。可应用于对话系统等德语情感分析场景。
emotion_text_classifier - DistilRoBERTa微调的多类情感分析模型
DistilRoBERTaGithubHuggingface开源项目情感分类机器学习模型深度学习自然语言处理
这是一个基于DistilRoBERTa微调的情感分类模型,能够识别文本中的七种情绪,包括六种基本情绪和一种中性情绪。模型在《老友记》剧本数据集上进行了微调,特别适合分析电视剧和电影的对话文本。支持的情绪标签包括愤怒、厌恶、恐惧、快乐、中性、悲伤和惊讶,为自然语言处理中的情感分析任务提供了实用工具。
distilbert-base-multilingual-cased-sentiment - 多语种情感分析模型的高效文本分类能力
Amazon评论GithubHuggingfacedistilbert-base-multilingual-cased-sentiment开源项目情感分析文本分类机器学习模型
本项目基于distilbert-base-multilingual-cased模型进行微调,在amazon_reviews_multi数据集上实现了优异的文本分类效果,准确率和F1值均为0.7648。模型通过优化训练参数和分布式数据处理,实现高效运行,适合多语言情感分析应用场景,可用于全球市场的用户评价分析。
roberta-base-go_emotions - RoBERTa模型实现28种情感多标签分类
GithubHuggingfaceRoBERTago_emotions数据集text-classification多标签分类开源项目情感分析模型
该模型基于roberta-base,利用go_emotions数据集训练而成,可对文本进行28种情感的多标签分类。模型在测试集上实现0.474的准确率和0.450的F1分数。为提升性能,还提供ONNX版本。研究者可通过Hugging Face Transformers框架便捷应用此模型。值得注意的是,某些情感标签如'gratitude'表现优异,F1值超过0.9,而'relief'等标签表现欠佳,可能与训练数据分布不均有关。通过优化每个标签的阈值,模型的整体F1分数可提升至0.541,显示出进一步改进的潜力。
sentiment-hts5-xlm-roberta-hungarian - 使用XLM-RoBERTa进行匈牙利语推文情感分类
GithubHuggingfaceXLM-RoBERTa匈牙利语开源项目情感分析文本分类模型
此情感分析模型基于XLM-RoBERTa,对匈牙利推文进行五种情感状态的分类。模型经过HTS数据集微调,支持分析最长128字符的推文。了解更多技术细节和使用实例,可访问GitHub或在线演示网站。
bert-multilingual-go-emtions - 多语言情感分类模型,支持高效识别28种情感
BERTGithubGoEmotionsHuggingface多语言开源项目情感分类模型模型性能
该BERT模型经过微调,可在GoEmotions数据集上进行中英跨语言情感分类,支持28种情感类别,如喜悦、愤怒、爱等。模型在验证集上表现出85.95%的高准确率,训练过程结合了英语和机器翻译的中文样本,通过两阶段方法提升性能,包含初始训练和高置信度样本回馈再训练。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号