Project Icon

wav2vec2-large-xlsr-53-swedish

基于Wav2Vec2的瑞典语语音识别模型 支持16kHz采样率

这是一个基于Wav2Vec2-Large-XLSR-53在瑞典语数据集上微调的语音识别模型。模型在Common Voice瑞典语测试集上达到14.29% WER和4.93% CER的性能。它可直接使用,无需额外语言模型,适用于16kHz采样率音频。模型经过多阶段预训练和微调,为瑞典语自动语音识别任务提供了有效解决方案。

wav2vec2-large-960h - 大规模预训练语音识别模型实现低资源高性能
GithubHuggingfaceLibrispeechWav2Vec2开源项目模型深度学习自然语言处理语音识别
Wav2Vec2-Large-960h是Facebook开发的预训练语音识别模型,在960小时LibriSpeech数据上微调。采用自监督学习从原始音频学习表示,在低资源场景下表现优异。LibriSpeech测试集上词错误率为1.8/3.3。模型可用于语音转写,提供了详细使用示例。
wav2vec2-xls-r-300m-hebrew - XLS-R微调的希伯来语语音识别模型
GithubHebrewHuggingfaceWav2Vec2XLS-R开源项目微调模型语音识别
该开源项目提供了一个针对希伯来语优化的语音识别模型。基于wav2vec2-xls-r-300m架构,通过两阶段训练方法在私有数据集上进行微调。模型在测试集上实现23.18%的词错误率,展示了特定语言语音识别优化的有效途径。这一模型为希伯来语自动语音识别研究和应用提供了实用工具。
nb-wav2vec2-1b-bokmaal - 基于XLS-R的挪威语Bokmål语音识别模型实现高精度转录
GithubHugging FaceHuggingfaceNPSCWav2Vec2开源项目挪威语模型语音识别
nb-wav2vec2-1b-bokmaal是一个基于XLS-R的挪威语Bokmål语音识别模型,在NPSC测试集上达到6.33%词错误率和2.48%字符错误率。该模型由NbAiLab团队使用挪威议会语音语料库(NPSC)训练,并开源了完整代码和参数配置,便于研究者复现和优化。模型在Hugging Face平台发布,支持挪威语自动语音识别任务。
wav2vec2-large-es-voxpopuli - Wav2Vec2大型西班牙语语音识别模型基于VoxPopuli预训练
GithubHuggingfaceVoxPopuliWav2Vec2开源项目模型自动语音识别语音语料库预训练模型
Wav2Vec2-Large-VoxPopuli是一个基于Facebook Wav2Vec2技术的西班牙语语音识别模型。该模型利用VoxPopuli语料库中的无标签西班牙语音频数据进行预训练,能够有效学习语音结构。模型适用于自动语音识别任务,可通过微调提升特定领域性能。采用CC-BY-NC-4.0许可证,为语音处理研究和开发提供了有力工具。
wav2vec2-hausa2-demo-colab - wav2vec2-large-xlsr-53 微调的 Hausa 语音识别模型
GithubHausa语Huggingfacewav2vec2开源项目模型深度学习自然语言处理语音识别
wav2vec2-large-xlsr-53 模型在 Common Voice 数据集上微调,专门用于 Hausa 语音识别。模型在评估集上达到 0.7237 的词错误率,为 Hausa 语音识别提供了基础解决方案。尽管训练细节有限,但采用了 Adam 优化器和混合精度训练等先进技术,为进一步改进奠定了基础。这个开源的 Hausa 语音识别模型可用于语音转文本、语言学研究或开发针对 Hausa 语言的语音应用。它展示了迁移学习在低资源语言处理中的潜力,为非洲语言技术的发展贡献力量。
wav2vec2-large-robust-ft-libri-960h - 多领域预训练的大规模语音识别模型
GithubHuggingfaceLibrispeechWav2Vec2开源项目机器学习模型自监督学习语音识别
wav2vec2-large-robust-ft-libri-960h是一个基于Wav2Vec2架构的大规模语音识别模型。该模型在多个领域的音频数据集上进行了预训练,包括Libri-Light、CommonVoice、Switchboard和Fisher,涵盖了有声读物、众包语音和电话交谈等多种音频类型。随后,模型在960小时的Librispeech数据集上进行了微调。这种多领域预训练和目标域微调的方法显著提高了模型在跨领域语音识别任务中的性能。模型支持16kHz采样率的语音输入,适用于需要处理多样化音频数据的应用场景。
wav2vec2-large-xlsr-malayalam - 基于wav2vec2的马来亚拉姆语语音识别模型
GithubHuggingfaceMalayalamWav2Vec2XLSR开源项目模型模型微调语音识别
这个项目是基于wav2vec2-large-xlsr-53模型针对马来亚拉姆语优化的语音识别系统。利用多个马来亚拉姆语语音数据集训练,测试集词错误率达28.43%。模型支持16kHz采样的语音输入,无需额外语言模型。项目提供了使用指南、评估方法和训练流程,便于部署和进一步改进。
Wav2Vec2-large-xlsr-hindi - 针对印地语优化的开源语音识别模型
GithubHindiHuggingfaceWav2Vec2开源项目模型深度学习自然语言处理语音识别
Wav2Vec2-large-xlsr-hindi是一个专为印地语优化的开源语音识别模型。该模型基于Facebook的wav2vec2-large-xlsr-53架构,通过低资源印度语言多语言ASR挑战数据集进行微调。适用于16kHz采样的语音输入,无需额外语言模型即可直接使用。在Common Voice印地语测试集上,模型达到72.62%的词错误率。项目提供了完整的使用指南、评估方法和训练脚本,为研究人员的进一步开发和应用提供了便利。
wav2vec2-base - Facebook开发的语音表征学习模型实现低资源语音识别
GithubHuggingfaceWav2Vec2开源项目模型深度学习自监督学习语音识别语音预训练
Wav2Vec2-Base是Facebook开发的语音预训练模型,基于16kHz采样语音音频。该模型通过掩蔽输入语音的潜在空间和解决对比学习任务,学习语音表征。在LibriSpeech基准测试中,即使只使用少量标注数据,也能取得优异成绩,证明了低资源语音识别的可行性。研究人员可以利用此模型进行微调,应用于不同的语音识别任务。
wav2vec2-large-xlsr-53-gender-recognition-librispeech - Wav2Vec2模型在Librispeech数据集上的音频性别识别应用
GithubHuggingfaceLibrispeechwav2vec2开源项目性别识别模型深度学习语音识别
这是一个基于facebook/wav2vec2-xls-r-300m模型在Librispeech-clean-100数据集上微调的音频性别识别模型。模型在评估集上达到0.9993的F1分数,性能表现优异。项目提供了完整的推理代码,包括自定义数据集处理和批量音频处理功能。训练过程采用了Adam优化器和线性学习率调度等策略。该模型为音频性别识别任务提供了一个高效可靠的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号