Project Icon

NeuralLLaMa-3-8b-DT-v0.1

结合多模型优势的文本生成解决方案,增强任务表现

NeuralLLaMa-3-8b-DT-v0.1 是一种通过融合ChimeraLlama-3-8B-v2、llama-3-stella-8B和llama-3-merged-linear等模型,借助LazyMergekit技术,提升了文本生成任务精确度的开源项目。适用于0-Shot和多次尝试测试,表现出出色的任务表现,严格准确率达43.71%。项目易于集成,支持多种量化配置,适合多种平台应用。

项目介绍:NeuralLLaMa-3-8b-DT-v0.1

概述

NeuralLLaMa-3-8b-DT-v0.1是一个由多种模型融合而成的文本生成模型。为了提升性能和精度,项目使用了LazyMergekit工具,将以下三个模型合并为一个强大的模型:

这款模型在若干标准数据集上展示了其在文本生成方面的能力。

配置

在配置方面,该模型使用了一系列参数进行优化:

models:
  - model: NousResearch/Meta-Llama-3-8B
  - model: mlabonne/ChimeraLlama-3-8B-v2
    parameters:
      density: 0.33
      weight: 0.2
  - model: nbeerbower/llama-3-stella-8B
    parameters:
      density: 0.44
      weight: 0.4
  - model: uygarkurt/llama-3-merged-linear
    parameters:
      density: 0.55
      weight: 0.4
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3-8B
parameters:
  int8_mask: true
dtype: float16

采用的是dare_ties合并方法,并使用浮点16位数据类型来提高效率。

使用方法

用户可以通过Python程序来使用NeuralLLaMa-3-8b-DT-v0.1。以下是一个简单的例子:

!pip install -qU transformers accelerate bitsandbytes

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
import torch

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

MODEL_NAME = 'Kukedlc/NeuralLLaMa-3-8b-DT-v0.1'
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map='cuda:0', quantization_config=bnb_config)

prompt_system = "你是一位流利使用西班牙语的高级语言模型, 名为Roberto the Robot, 是一名立志成为后现代艺术家的机器人。"
prompt = "创建一件艺术作品,用ASCII艺术展示你作为一个高级LLm, 把自己看作机遇之间的混合体,让自己自由发挥。"

chat = [
    {"role": "system", "content": f"{prompt_system}"},
    {"role": "user", "content": f"{prompt}"},
]

chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(chat, return_tensors="pt").to('cuda')
streamer = TextStreamer(tokenizer)
stop_token = "<|eot_id|>"
stop = tokenizer.encode(stop_token)[0]

_ = model.generate(**inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, temperature=0.7, repetition_penalty=1.2, top_p=0.9, eos_token_id=stop)

该模型支持在GPU上加速,并利用量化配置来提升效率。

评价结果

NeuralLLaMa-3-8b-DT-v0.1在多个数据集上的表现如下:

  • IFEval (0-Shot):43.71
  • BBH (3-Shot):28.01
  • MATH Lvl 5 (4-Shot):7.25
  • GPQA (0-shot):7.05
  • MuSR (0-shot):9.69
  • MMLU-PRO (5-shot):31.02

平均得分为21.12,详细结果可以查看开放大语言模型排行榜

通过上述内容,NeuralLLaMa-3-8b-DT-v0.1不仅技术先进,而且在处理不同类型的文本生成任务时展示了极具竞争力的能力。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号