Project Icon

L3-8B-Stheno-v3.2-GGUF-IQ-Imatrix

基于Llama 3的低资源角色扮演大语言模型

L3-8B-Stheno-v3.2-GGUF-IQ-Imatrix是一个经过优化量化的Llama 3大语言模型。该模型针对角色扮演场景进行了特别优化,支持故事创作和多轮对话。通过多种量化版本实现了低资源运行,8GB显存即可部署使用。模型在保持创造力的同时,具备出色的对话连贯性和指令遵循能力。

Llama-3.2-3B - 利用优化技术实现提速和内存节省的开源语言模型项目
GithubHuggingfaceLlama 3.2多语言处理大语言模型开源项目模型模型微调算力优化
这是一个基于Unsloth技术的大型语言模型优化项目。支持8种官方语言,采用改进的transformer架构和GQA技术。训练速度提升2.4倍,内存使用减少58%。提供Google Colab环境,支持对话、文本补全等场景的模型微调,适合各级用户。该项目基于Meta的原始模型,遵循社区许可协议。
Llama-3.1-8B - Meta推出的多语言大型语言模型 支持128K超长上下文
GithubHuggingfaceLlama 3.1Meta人工智能多语言大语言模型开源项目模型
Llama-3.1-8B是Meta公司推出的多语言大型语言模型,采用优化的Transformer架构,支持128K超长上下文。该模型在8种语言中进行预训练和指令微调,在通用对话和多语言任务上表现优异。Llama-3.1-8B适用于助手式聊天、自然语言生成等商业和研究场景,并提供自定义商业许可证。用户在遵守使用政策的前提下可广泛应用该模型。
Hermes-3-Llama-3.1-8B-GGUF - 新一代高性能开源语言模型的量化版本
GithubHermes 3HuggingfaceJSON模式人工智能函数调用开源项目模型语言模型
Hermes-3-Llama-3.1-8B-GGUF是Nous Research开发的Hermes系列语言模型最新版本的量化版本。这个通用型模型在代理能力、角色扮演、推理、多轮对话和长上下文理解方面有显著提升。它采用ChatML作为提示格式,支持函数调用和结构化输出,并在多项基准测试中表现优异。研究者和开发者可以通过HuggingFace Transformers或vLLM框架便捷地使用该模型。
llama3-8B-DarkIdol-2.2-Uncensored-1048K-GGUF - 多语言支持的llama3-8B GGUF量化模型,提供多级压缩优化
GGUFGithubHuggingfacellama3大语言模型开源项目权重压缩模型量化模型
llama3-8B GGUF量化模型支持英语、日语和中文,提供3.3GB至16.2GB多种压缩版本,适应不同硬件需求。Q4_K系列在性能和质量上表现均衡。模型基于transformers库开发,适用于角色扮演和偶像相关场景。用户可通过Hugging Face平台获取各版本及其性能对比信息。
Llama-3.1-Storm-8B - 多任务智能的高性能开源语言模型
GithubHuggingfaceLlama-3.1-Storm-8B人工智能大语言模型开源项目机器学习模型模型微调
Llama-3.1-Storm-8B是基于Llama-3.1-8B-Instruct改进的开源语言模型。通过自主数据筛选、定向微调和模型合并,它在10个基准测试中显著超越原始模型,包括指令遵循、知识问答、推理能力、真实性和函数调用。GPQA提升7.21%,TruthfulQA提升9%,函数调用准确率提升7.92%。支持Transformers、vLLM和Ollama等多种部署方式,为AI开发者提供高性能的通用型语言模型选择。
Llama-2-7B-Chat-GGUF - Llama 2对话模型的量化版本 支持多种推理环境
GGUFGithubHuggingfaceLlama 2人工智能大语言模型开源项目模型量化
Llama-2-7B-Chat-GGUF是Meta公司Llama 2对话模型的GGUF格式量化版本。该模型在保持性能的同时显著减小了体积,支持CPU和GPU推理。提供多种量化精度选择,适用于聊天机器人、问答系统等对话场景。作为开源大语言模型,它具有良好的效率和精确度。
Lumimaid-v0.2-12B-GGUF-IQ-Imatrix - 高效量化与SillyTavern兼容的Lumimaid角色扮演模型
GithubHuggingfaceLumimaid兼容性开源项目数据集模型角色扮演量化过程
采用GGUF-IQ-Imatrix量化方法,高效转换和运行Lumimaid v0.2模型。兼容SillyTavern角色扮演预设,并建议使用最新版本KoboldCpp进行运行。支持低温度预设优化性能,并通过丰富的预设和示例提升角色扮演体验。如有疑问,可参与讨论获取更多支持。
Llama-3.2-3B - Meta推出Llama 3.2多语言大型语言模型系列
GithubHuggingfaceLlama 3.2Meta人工智能多语言大语言模型开源项目模型
Llama-3.2-3B是Meta开发的多语言大型语言模型,支持8种语言,包括英语和德语。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练而成。它可用于对话、知识检索和摘要等任务,具有128K的上下文长度,并使用分组查询注意力机制提高推理效率。Llama-3.2-3B适用于商业和研究用途,可进一步微调以适应各种自然语言生成任务。模型遵循Llama 3.2社区许可协议。
Llama-3.2-1B - 多语言大型语言模型引领自然语言处理新纪元
GithubHuggingfaceLlama 3.2Meta多语言开源项目模型生成模型社区许可
Llama 3.2是由Meta开发的多语言大型语言模型,通过优化的Transformer架构和多语言对话定制,尤其适用于问答、总结等任务。支持8种语言,可进行超越官方语言的定制训练,以适应多种自然语言生成任务。此项目展示了语言模型在商业和研究应用中日益增长的重要性,提供高效的多语言文本生成能力,助力移动AI写作助手等智能应用的发展。用户需遵循Llama 3.2社区许可规定,确保使用场景的安全性和合规性。
Llama3-8B-Chinese-Chat-GGUF-4bit - 支持中英文交流的跨语言模型功能
GithubHuggingfaceLlama3-8B-Chinese-Chat功能升级开源项目模型语言模型
Llama3-8B-Chinese-Chat提供了优化的语言模型,以支持中英文用户的交互。最新的v2.1版本的模型提升了角色扮演、函数调用和数学计算功能,并减少了中文回答中夹杂英文的现象。用户可以通过GitHub和HuggingFace平台获取使用指南,提供在线演示和多种模型版本以满足不同用户的需求。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号