Project Icon

Chinese-Llama-2-7b

开源且可商用的中文Llama2模型,兼容中英文SFT数据集与llama-2-chat格式

项目提供开源且商用的中文Llama2模型及中英文SFT数据集,兼容llama-2-chat格式并支持优化。项目包含在线演示、多模态模型、Docker部署和API接口,支持多种硬件配置,用户可快速下载与测试。

Llama-3.2-1B-Instruct-GGUF - 通过量化优化技术改进多语言文本生成
GithubHuggingfaceLLMLlama 3.2Meta开源项目模型社区许可证许可协议
本项目采用llama.cpp和imatrix量化技术,提高了多语言文本生成的能力。结合Bartowski的校准文件,以及IQ和Q系列多种量化方法,明显降低了模型的困惑度并提高了文本生成的准确性。这些优化在多种条件下保持高效,且降低了存储空间的需求,提供更灵活的AI应用优化和部署方案。
Firefly-LLaMA2-Chinese - 低资源高效的中英文LLaMA2模型预训练与指令微调
Firefly-LLaMA2-ChineseGithubHuggingface中英双语模型低资源增量预训练大模型技术开源项目
本项目专注于低资源增量预训练与多轮指令微调,提升LLaMA2模型在中文领域的表现。支持对多种中英文预训练模型进行扩充与优化,开源了7B和13B的Base与Chat模型。在Open LLM Leaderboard和CMMLU榜单上表现出色,以4*V100完成高效训练,远低于其他模型的GPU资源需求。提供全项目信流程训练代码及数据,对LLaMA2、Baichuan2等多个模型进行详细评测,确保用户获得全面权威的模型性能数据。
llama-3-chinese-8b-instruct-v3-gguf - 量化对话模型,适用于多平台的高效问答
GithubHuggingfaceLlama-3-Chinese-8B-Instruct-v3中文模型对话模型开源项目性能指标模型量化模型
该项目是Llama-3-Chinese-8B-Instruct-v3的量化版本,专为提升对话与问答表现而设计,支持多平台使用。建议在内存充裕时使用Q6_K或Q8_0配置以达最佳效果。用户可在HF Space体验,详情与说明参见GitHub页面。
Llama-3.2-3B - Meta推出Llama 3.2多语言大型语言模型系列
GithubHuggingfaceLlama 3.2Meta人工智能多语言大语言模型开源项目模型
Llama-3.2-3B是Meta开发的多语言大型语言模型,支持8种语言,包括英语和德语。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练而成。它可用于对话、知识检索和摘要等任务,具有128K的上下文长度,并使用分组查询注意力机制提高推理效率。Llama-3.2-3B适用于商业和研究用途,可进一步微调以适应各种自然语言生成任务。模型遵循Llama 3.2社区许可协议。
open_llama_7b - 开源复现的大规模语言模型媲美原版LLaMA
GithubHuggingfaceOpenLLaMA人工智能大语言模型开源开源项目模型自然语言处理
OpenLLaMA是一个基于Apache 2.0许可的开源大型语言模型,旨在复现Meta AI的LLaMA。该项目提供了在1万亿个token上训练的7B和3B模型,以及在6000亿个token上训练的13B模型预览版。OpenLLaMA基于RedPajama数据集训练,在多项评估任务中表现与原版LLaMA相当或更优。项目开源了PyTorch和JAX格式的预训练权重,支持使用Hugging Face transformers和EasyLM框架加载模型。
Llama-2-7B-GPTQ - Llama 2 7B的GPTQ量化版本 支持多种参数选项
GithubHuggingfaceLlama 2Meta人工智能大语言模型开源项目模型自然语言处理
该项目提供Meta Llama 2 7B模型的GPTQ量化版本,包含4位精度、多种组大小和Act Order等参数选项。模型文件兼容AutoGPTQ、ExLlama等框架,适用于GPU推理。项目提供了在text-generation-webui使用的说明,以及Python代码调用示例。这些量化版本在保持性能的同时降低显存占用,便于更多用户部署使用Llama 2模型。
llama-3-2-1b-sft - 超大规模对话数据集的精细调优AI模型
GithubHuggingfacellama-3-2-1b-sft开源项目微调模型训练数据集超参数超大规模语言模型
该项目将NousResearch的Llama-3.2-1B模型进行精细调优,使用HuggingFaceH4/ultrachat_200k数据集以提高对话处理性能。在多GPU分布式训练中,使用Adam优化器和余弦学习率调度策略,该模型在验证集上的损失率降低至1.2759。适用于广泛的自然语言处理应用,特别是在对话生成和交互式AI领域中。
TinyLlama-1.1B-Chat-v0.3 - 轻量级高性能AI聊天助手 基于3万亿token训练
GithubHuggingfaceTinyLlama大语言模型对话模型开源项目模型预训练
TinyLlama-1.1B-Chat-v0.3是一个基于Llama 2架构的轻量级开源语言模型,使用1.1B参数在3万亿tokens上预训练。模型采用OpenAssistant数据集微调,支持chatml格式,具有部署灵活、资源占用少等特点。TinyLlama保持了与Llama生态系统的兼容性,同时适用于计算资源受限的场景,为AI聊天应用提供了一个高效实用的解决方案。
Llama-3.1-8B - Meta推出的多语言大型语言模型 支持128K超长上下文
GithubHuggingfaceLlama 3.1Meta人工智能多语言大语言模型开源项目模型
Llama-3.1-8B是Meta公司推出的多语言大型语言模型,采用优化的Transformer架构,支持128K超长上下文。该模型在8种语言中进行预训练和指令微调,在通用对话和多语言任务上表现优异。Llama-3.1-8B适用于助手式聊天、自然语言生成等商业和研究场景,并提供自定义商业许可证。用户在遵守使用政策的前提下可广泛应用该模型。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号