Project Icon

uvloop

基于libuv的高性能Python异步事件循环库

uvloop是一个基于libuv的Python异步事件循环库,可直接替换内置asyncio事件循环。采用Cython实现,性能比原生asyncio提升2-4倍。支持Python 3.8及以上版本,通过pip即可安装。uvloop提供简洁API,便于在异步应用中集成使用,有效提升Python网络编程性能。

.. image:: https://img.shields.io/github/actions/workflow/status/MagicStack/uvloop/tests.yml?branch=master :target: https://github.com/MagicStack/uvloop/actions/workflows/tests.yml?query=branch%3Amaster

.. image:: https://img.shields.io/pypi/v/uvloop.svg :target: https://pypi.python.org/pypi/uvloop

.. image:: https://pepy.tech/badge/uvloop :target: https://pepy.tech/project/uvloop :alt: PyPI - Downloads

uvloop is a fast, drop-in replacement of the built-in asyncio event loop. uvloop is implemented in Cython and uses libuv under the hood.

The project documentation can be found here <http://uvloop.readthedocs.org/>. Please also check out the wiki <https://github.com/MagicStack/uvloop/wiki>.

Performance

uvloop makes asyncio 2-4x faster.

.. image:: https://raw.githubusercontent.com/MagicStack/uvloop/master/performance.png :target: http://magic.io/blog/uvloop-blazing-fast-python-networking/

The above chart shows the performance of an echo server with different message sizes. The sockets benchmark uses loop.sock_recv() and loop.sock_sendall() methods; the streams benchmark uses asyncio high-level streams, created by the asyncio.start_server() function; and the protocol benchmark uses loop.create_server() with a simple echo protocol. Read more about uvloop in a blog post <http://magic.io/blog/uvloop-blazing-fast-python-networking/>_ about it.

Installation

uvloop requires Python 3.8 or greater and is available on PyPI. Use pip to install it::

$ pip install uvloop

Note that it is highly recommended to upgrade pip before installing uvloop with::

$ pip install -U pip

Using uvloop

As of uvloop 0.18, the preferred way of using it is via the uvloop.run() helper function:

.. code:: python

import uvloop

async def main():
    # Main entry-point.
    ...

uvloop.run(main())

uvloop.run() works by simply configuring asyncio.run() to use uvloop, passing all of the arguments to it, such as debug, e.g. uvloop.run(main(), debug=True).

With Python 3.11 and earlier the following alternative snippet can be used:

.. code:: python

import asyncio
import sys

import uvloop

async def main():
    # Main entry-point.
    ...

if sys.version_info >= (3, 11):
    with asyncio.Runner(loop_factory=uvloop.new_event_loop) as runner:
        runner.run(main())
else:
    uvloop.install()
    asyncio.run(main())

Building From Source

To build uvloop, you'll need Python 3.8 or greater:

  1. Clone the repository:

    .. code::

    $ git clone --recursive git@github.com:MagicStack/uvloop.git $ cd uvloop

  2. Create a virtual environment and activate it:

    .. code::

    $ python3 -m venv uvloop-dev $ source uvloop-dev/bin/activate

  3. Install development dependencies:

    .. code::

    $ pip install -e .[dev]

  4. Build and run tests:

    .. code::

    $ make $ make test

License

uvloop is dual-licensed under MIT and Apache 2.0 licenses.

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号