Project Icon

AraT5-MSAizer

先进AI模型实现多种阿拉伯方言到标准阿拉伯语的转换

AraT5-MSAizer是一款基于UBC-NLP/AraT5v2-base-1024模型优化的语言转换工具,致力于将五种主要阿拉伯方言转换为现代标准阿拉伯语(MSA)。该模型利用MADAR、North Levantine Corpus和PADIC等高质量语料库进行训练,并通过OPUS数据集的反向翻译扩充了训练数据。在官方评估中,AraT5-MSAizer在BLEU和Comet DA指标上分别达到0.2179和0.0016,展示了其在阿拉伯方言标准化方面的实用价值。

seamless-m4t-v2-large - 跨语言跨模态机器翻译新里程碑
GithubHuggingfaceSeamlessM4T多语言翻译开源项目文本翻译模型自动语音识别语音翻译
SeamlessM4T v2是一款先进的多语言多模态机器翻译模型,支持近100种语言。它可实现语音与文本之间的多向转换,覆盖101种语音输入、96种文本处理和35种语音输出语言。新版本采用UnitY2架构,显著提升了翻译质量和语音生成效率,为跨语言交流提供了更优秀的技术支持。
Ruqiya_-_Merge-Gemma-2b-it-with-a-Fine-Tuned-one-for-Arabic-gguf - 通过量化技术增强阿拉伯语模型的表现力
GithubHuggingfaceMerge-Gemma-2b-it-with-a-Fine-Tuned-one-for-Arabicfine-tuning开源项目模型模型合并量化阿拉伯语
项目旨在通过融合与微调Merge-Gemma-2b-it模型,提升阿拉伯语语言模型的精确性。借助LazyMergekit工具,将Ruqiya团队开发的微调模型与Google基准模型结合,并采用多个量化方法,提升模型的性能与存储效率。量化工作由Richard Erkhov完成,GitHub上提供了多种模型版本供用户使用。从数据配置到实际应用,项目提供全面的技术支持,以优化语言生成任务。
madlad400-3b-mt - 基于T5架构的多语言机器翻译模型
GithubHuggingfaceMADLAD-400T5模型多语言翻译开源项目机器学习模型自然语言处理
MADLAD-400-3B-MT是一个基于T5架构的多语言机器翻译模型,覆盖450多种语言。该模型在1万亿个token的公开数据上训练,可实现多语言间的高质量翻译。支持文本生成和翻译任务,主要面向研究社区。尽管参数量较小,性能却可与更大规模模型相媲美。MADLAD-400-3B-MT为低资源语言提供了有力的自然语言处理支持,促进了多语言NLP的进步。
madlad400-3b-mt - 多语言翻译模型,支持450+种语言的实时翻译
GithubHuggingfaceMADLAD-400T5模型多语言开源项目机器翻译模型语言模型
MADLAD-400-3B-MT是基于T5架构的多语言机器翻译模型,在1万亿个涵盖450多种语言的标记上训练而成。模型采用32层3B参数的共享架构,使用256k标记的Sentence Piece模型进行编解码。尽管规模较小,其翻译性能可媲美大型模型,特别适合处理低资源语言的自然语言任务。
T5ForConditionalGeneration-correct-vocab-calibrated - T5条件生成模型的词汇校准优化
GithubHuggingfacetransformers人工智能开源项目机器学习模型模型卡自然语言处理
这是一个基于Hugging Face Transformers库的T5条件生成模型,通过词汇校准进行了优化。该模型致力于提升文本生成任务的性能,尤其注重词汇准确性。它可应用于摘要生成、问答和文本翻译等多种下游任务。虽然模型的具体细节、训练过程和评估结果尚未完全披露,但其应用潜力值得关注。用户在使用时应当了解模型可能存在的偏见和局限性。
SILMA-9B-Instruct-v1.0 - 阿拉伯语9B参数AI模型,广泛适应商业场景
GithubHuggingfaceSILMA AI业务应用大语言模型开源项目模型生成式AI阿拉伯语
SILMA-9B-Instruct-v1.0是一个开放权重的阿拉伯语AI模型,基于Google Gemma基础,设计有9B参数。在阿拉伯语任务中的表现优异,经过MMLU、AlGhafa和ARC Challenge等多项基准测试,最高准确率达到91.26。该模型支持多GPU和量化版本,实现多设备高效运行,适合各种商业应用场景。
aya-23-8B - 支持23种语言的开源多语言大模型
Aya-23-8BGithubHuggingface人工智能多语言模型开源项目机器学习模型自然语言处理
Aya-23-8B是由Cohere For AI开发的开源多语言大模型,基于Command系列模型架构,通过Aya Collection数据集进行指令微调。该模型包含80亿参数,支持阿拉伯语、中文、英语在内的23种语言,具有8192的上下文长度。模型采用优化的Transformer架构,主要面向学术研究和非商业应用场景。
TowerBase-7B-v0.1 - 增强翻译及多语种任务的多语言模型性能
GithubHuggingfaceTowerBase-7BUnbabel多语言开源项目文本生成模型翻译模型
TowerBase-7B-v0.1是一个多语言模型,通过继续在Llama 2的基础上对20亿条多语种数据进行预训练,在10种主要语言中表现出色。非常适合用于翻译和相关应用任务,在AI2 Reasoning Challenge和HellaSwag等测试中展现出优异的归一化准确率。该模型支持快速无监督调优,为相应语言的研究提供支持。技术报告将提供详细信息。
flan-t5-base - 基于T5架构的多语言文本生成模型
FLAN-T5GithubHuggingface多语言开源项目指令微调模型自然语言处理迁移学习
FLAN-T5 base是基于T5架构的多语言文本生成模型,在1000多个任务上进行了指令微调。该模型支持翻译、问答、推理等自然语言处理任务,在零样本和少样本学习方面表现优异。FLAN-T5 base不仅覆盖多种语言,还能在有限参数下实现与更大模型相当的性能,为研究人员提供了探索语言模型能力和局限性的有力工具。
t5-v1_1-small - Google T5模型的改进版:通用文本处理框架
GithubHuggingfaceT5开源项目文本到文本转换模型自然语言处理迁移学习预训练模型
t5-v1_1-small作为Google T5模型的升级版,引入了GEGLU激活函数并在预训练阶段移除了dropout。模型在C4数据集上完成预训练,需要针对特定任务进行微调。其统一的文本到文本框架使其能够处理包括摘要、问答和文本分类在内的多种NLP任务,为迁移学习研究提供了新的可能性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号