Project Icon

nannyml

部署后模型性能估算和数据漂移检测

NannyML是一个开源的Python库,专为数据科学家设计,能够在没有目标数据的情况下估算模型的部署后性能,并检测数据漂移。它能将数据漂移警报与模型性能变化智能关联。NannyML支持所有表格数据、分类和回归模型,拥有简单易用的界面和互动式可视化功能。通过NannyML,用户可以监控模型性能、分析数据漂移、找到模型性能下降的根本原因,并避免不必要的警报干扰,轻松完成环境集成和配置。

evidently - 用于评估、测试和监控机器学习系统的开源框架
EvidentlyGithubLLM监控开源框架开源项目数据漂移检测机器学习评估
Evidently是一个开源的Python库,专为评估和监控机器学习和大语言模型系统而设计。它支持分类、回归和推荐系统,并提供超过100种内置指标,允许用户自定义评估和测试。Evidently的模块化设计使用户能够通过Reports、Test Suites和实时监控Dashboard轻松实现评估和持续监控,适用于各种AI数据管道,从实验到生产环境。
nni - 可自动执行特征工程、神经架构搜索、超参数调优和深度学习的模型压缩
GithubNNI开源项目架构搜索模型压缩神经网络智能优化超参数调整
NNI提供一站式解决方案,支持自动化的特征工程、神经架构搜索、超参数调整和模型压缩。它兼容多种框架,并提供详尽的API、丰富的示例及全面的教程。适用于多种训练环境,包括本地、远程SSH服务器和Kubernetes,帮助推动开源社区的技术发展。
geospatial-ml - 简化地理空间分析和机器学习包的安装流程
GithubPython包geospatial-ml地理空间分析开源软件开源项目机器学习
geospatial-ml是一个开源Python工具,通过单一命令简化地理空间分析和机器学习包的安装过程。这个项目为研究人员、数据科学家和GIS专业人士提供了一种高效设置地理空间数据科学环境的方法。它优化了工作流程,提升了效率,并保证了环境的一致性。geospatial-ml支持多种常用地理空间分析和机器学习库,使用户能够快速搭建完整的分析环境。该项目采用MIT许可证,并提供完整的在线文档。
DataProfiler - DataProfiler:自动化数据分析与敏感数据检测的Python库
DataProfilerGithubPython开源项目敏感数据检测数据分析数据概要
DataProfiler是一个Python库,用于简化数据分析、监控与敏感数据检测。通过单一命令加载数据并自动格式化为DataFrame,支持模式识别、统计分析及实体识别(PII/NPI)。带有预训练的深度学习模型,可高效识别敏感数据,并允许用户添加新的实体识别管道。支持CSV、AVRO、Parquet等多种数据格式,提供便捷的数据处理解决方案。
BentoML - 简化AI模型推理API的构建与部署
AI模型BentoMLDocker容器Github开源项目模型服务框架生产环境
BentoML是一个开源模型服务框架,简化了AI和ML模型的生产部署。可以将任何模型推理脚本轻松转化为REST API服务器,并通过简单配置文件管理环境、依赖和模型版本。BentoML支持高性能推理API的构建,利用动态批处理、模型并行化和多阶段流水线等优化功能,最大化CPU/GPU利用率。此外,还支持自定义AI应用、异步推理任务和定制化前后处理逻辑。通过Docker容器或BentoCloud可轻松部署至生产环境,适用于各种机器学习框架和推理运行时。
ML-Notebooks - 机器学习笔记本资源库,支持快速搭建和扩展
Github人工智能代码示例开源项目机器学习深度学习自然语言处理
ML-Notebooks为不同的机器学习任务和应用提供了一系列精简且易于扩展的笔记本。项目整合了Codespaces技术,用户仅需几步简单配置,便可启动一个配备完整依赖项的开发环境,非常适合教育和研究使用。从基础入门到深入探索如PyTorch、GNN及GANs等前沿技术,应有尽有。
machine-learning - 机器学习与数据科学教程,深度学习、模型部署与强化学习
Githubmachine-learning开源项目强化学习时间序列模型部署深度学习
本项目持续更新,介绍了数据科学和机器学习各个主题。内容涵盖深度学习、模型部署、运筹学和强化学习等,提供Jupyter Notebook格式教程,结合Python科学栈(如numpy、pandas)和开源库(如scikit-learn、TensorFlow、PyTorch)进行教学示范,平衡数学符号与实际应用。
ML-NLP - 深入解析机器学习与自然语言处理全面知识库
GithubNLP面试开源项目机器学习深度学习算法工程师自然语言处理
ML-NLP项目提供机器学习与自然语言处理的全面资源,涉及关键理论和现实应用。各章节均配有实战代码,确保算法工程师高效备战面试。项目持续更新,跟上最新行业发展。
ML-Bench - 评测大型语言模型和代理在代码库级机器学习任务上的效果
GitHub仓库GithubML-Bench代码评估大语言模型开源项目机器学习任务
本文详细说明了如何在代码库级别评估大型语言模型和代理的表现,包括环境设置、数据准备、模型微调和API调用等内容。提供了相关脚本和工具,帮助研究者复现实验结果,适用于机器学习和模型评估领域的专业人员和研究者。
modelstore - 允许对机器学习模型进行版本控制、导出和保存到文件系统或云存储提供商Python库
Githubmodelstore多云支持开源开源项目机器学习模型管理版本控制
modelstore是一个Python库,可在本地文件系统或多种云存储(如AWS、GCP、Azure)中进行机器学习模型的版本管理、导出、保存和下载。无需跟踪服务器,支持模型域和状态管理、即时下载或内存加载,也可用作命令行工具。支持多个机器学习库,如TensorFlow、PyTorch、Scikit Learn等。详细信息请参考官方文档。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号