Project Icon

Meta-Llama-3.1-70B

Meta开发的多语言大型语言模型 支持高级对话和文本生成

Meta-Llama-3.1-70B是Meta推出的多语言大型语言模型系列之一。该模型采用优化的Transformer架构,支持128k上下文长度,在8种语言中表现优异。它专为多语言对话场景设计,可用于智能助手、自然语言生成等任务。该模型在多项行业基准测试中表现出色,超越众多开源和闭源聊天模型,为开发者提供了强大的多语言AI处理能力。Meta-Llama-3.1-70B支持商业和研究用途,为各类应用场景提供了先进的语言模型解决方案。

Llama-3.2-3B - 利用优化技术实现提速和内存节省的开源语言模型项目
GithubHuggingfaceLlama 3.2多语言处理大语言模型开源项目模型模型微调算力优化
这是一个基于Unsloth技术的大型语言模型优化项目。支持8种官方语言,采用改进的transformer架构和GQA技术。训练速度提升2.4倍,内存使用减少58%。提供Google Colab环境,支持对话、文本补全等场景的模型微调,适合各级用户。该项目基于Meta的原始模型,遵循社区许可协议。
Llama-3.2-11B-Vision-Instruct - Meta开发的多模态语言模型 提供图像理解与文本生成
GithubHuggingfaceLlama 3.2-VisionMeta图像识别多模态大语言模型开源项目模型自然语言处理
Llama-3.2-11B-Vision-Instruct是Meta开发的多模态语言模型,可处理图像和文本输入并生成文本输出。该模型在视觉识别、图像推理和描述任务中表现优异,性能超越多个开源和闭源多模态模型。基于Llama 3.1文本模型,采用优化的Transformer架构,通过监督微调和人类反馈强化学习提升性能。模型支持128k上下文长度,在大规模图像-文本对数据上训练,具备多语言处理能力。
Llama-3.2-90B-Vision - 前沿视觉语言模型助力图像识别和推理
GithubHuggingfaceLlama 3.2Meta多模态大语言模型开源项目模型自然语言处理计算机视觉
Llama-3.2-90B-Vision是Meta开发的多模态大语言模型,支持图像和文本输入并输出文本。该模型在视觉识别、图像推理、描述和问答等任务中表现优异,性能超越多个开源和闭源多模态模型。基于Llama 3.1文本模型,通过视觉适配器实现图像理解,支持128K上下文长度。经指令微调后可用于商业和研究,适用于多种视觉语言任务。使用需遵守Llama 3.2社区许可协议。
Meta-Llama-3.1-405B-Instruct-GGUF - Meta-Llama 3.1量化版大模型支持多语种文本生成
GGUFGithubHuggingfaceMeta-Llama-3.1-405B-Instruct大语言模型开源项目文本生成模型量化模型
Meta-Llama-3.1-405B-Instruct模型的GGUF量化版本支持英语、德语、法语在内的8种语言文本生成。通过2-bit和3-bit量化技术优化,可在llama.cpp、LM Studio等主流框架上运行,方便开发者进行本地部署和应用开发。
Llama-3.2-11B-Vision - Meta开发的多模态大语言模型 支持视觉识别和图像推理
GithubHuggingfaceLLAMA 3.2多模态模型开源项目机器学习模型自然语言处理计算机视觉
Llama-3.2-11B-Vision是Meta开发的多模态大语言模型,支持图像和文本输入、文本输出。该模型在视觉识别、图像推理、图像描述和通用图像问答方面表现出色。它基于Llama 3.1文本模型构建,采用优化的Transformer架构,通过监督微调和人类反馈强化学习进行对齐。模型支持128K上下文长度,经过60亿(图像,文本)对训练,知识截止到2023年12月。Llama-3.2-11B-Vision为商业和研究用途提供视觉语言处理能力。
Meta-Llama-3.1-8B-Instruct-quantized.w8a8 - 量化优化的多语言文本生成模型
GithubHuggingfaceMeta-Llama-3vLLM多语言开源项目文本生成模型量化
该模型通过INT8量化优化,实现了GPU内存效率和计算吞吐量的提升,支持多语言文本生成,适用于商业和研究中的辅助聊天任务。在多个基准测试中,该模型实现了超越未量化模型的恢复率,尤其在OpenLLM和HumanEval测试中表现突出。使用GPTQ算法进行量化,有效降低了内存和磁盘的占用。可通过vLLM后端快速部署,并支持OpenAI兼容服务。
Llama-3.2-1B-Instruct-4bit - 精简高效的多语言文本生成工具
GithubHuggingfaceLlama 3.2Meta可接受使用政策开源项目机器学习模型许可协议
Llama-3.2-1B-Instruct-4bit是从Meta的Llama 3.2-1B-Instruct模型转换为MLX格式的产品,支持包括英语、德语、法语在内的多语言文本生成。引入4bit量化技术以提升运行效率与支持更大输入扩展。提供便捷的Python接口以实现文本生成,适合对话系统和内容创作等应用。遵循Meta的社区许可协议以确保合法使用。
DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored - 多语言大规模生成模型,专注角色扮演对话
GithubHuggingfaceLlama 3.1Meta多语言支持大语言模型开源项目模型训练数据
该项目提供多语言对话生成,模型规模从8B到405B,特别适合角色扮演场景。基于优化的Transformer架构,并结合强化学习技术,适用于商业和研究用途,遵循Llama 3.1 Community License开放授权。
Meta-Llama-3.1-70B-Instruct-GGUF - LLaMA 3.1模型量化版本集合及性能参数对比
GithubHuggingfaceLlama 3.1人工智能大语言模型开源项目机器学习模型模型量化
Meta-Llama-3.1-70B-Instruct模型量化版本集合采用llama.cpp的imatrix压缩方式,包含从Q8_0到IQ3_M共13种量化等级选择。模型文件大小范围为74.98GB至31.94GB,适配LM Studio运行环境。Q6_K、Q5_K系列及IQ4_XS等中等压缩比版本在性能与资源占用方面达到较好平衡。
Hermes-3-Llama-3.1-70B - 基于Llama 3的新一代通用语言模型
GithubHermes 3Huggingface人工智能函数调用大语言模型对话系统开源项目模型
Hermes-3-Llama-3.1-70B是一个基于Llama 3架构的开源语言模型,由Nous Research团队开发。模型支持多轮对话、长文本理解、结构化输出等功能,采用ChatML格式进行交互。在基准测试中,该模型展现出与Llama-3.1 Instruct相当的性能表现。通过系统提示词可实现灵活的角色定制和功能调用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号