Project Icon

InternViT-6B-448px-V1-5

提升视觉模型分辨率及多语言OCR精度

InternViT-6B-448px-V1-5在InternViT-6B-448px-V1-2的基础上,通过动态调整训练图像分辨率和强化数据集质量来提高模型的高分辨率处理和OCR能力。该模型具有5540M参数,使用1到12块瓦片进行训练,并通过PaddleOCR进行了中英文OCR处理,增强了多语言OCR性能。建议在构建视觉语言模型时,使用最后一层的特征。

InternViT-6B-448px-V1-5项目介绍

项目概述

InternViT-6B-448px-V1-5是基于InternViT-6B-448px-V1-2的强大基础预训练模型开发而成的。此次更新将训练图像的分辨率从448×448扩展到动态的范围,基本瓦片大小为448×448,可扩展至最多12块。此外,项目还加强了预训练数据集的规模、质量和多样性,使得InternViT-6B-448px-V1-5展现出更强的鲁棒性、光学字符识别(OCR)能力和高分辨率处理能力。

模型详情

  • 模型类型: 视觉基础模型,特征骨干
  • 模型统计:
    • 参数数量(百万):5540(最后三个模块被丢弃)
    • 图像尺寸:448 x 448,训练时使用1到12个瓦片
  • 预训练数据集: 悉数使用了多种大型数据集,包括LAION-en、LAION-zh、COYO、GRIT、COCO、TextCaps、Objects365、OpenImages、All-Seeing、Wukong-OCR、LaionCOCO-OCR以及其他OCR相关数据集。为了增强模型的OCR能力,我们在普通的字幕数据集之外,特意加入了更多的OCR数据。具体而言,在从Wukong中提取的图像上使用PaddleOCR进行中文OCR处理,在LAION-COCO的图像上进行英文OCR处理。
  • 特殊说明: InternViT-6B最初有48个模块,我们发现使用倒数第四个模块的输出效果最好。为便于使用和减少GPU内存占用,只保留了45个模块,将参数数量从5.9B减少到5.5B。因此,若需基于此模型构建多模态语言模型(MLLM),请务必利用最后一层的特征。

模型使用示例(图像嵌入)

以下是使用Python代码的示例,展示了如何加载和应用InternViT-6B-448px-V1-5模型以进行图像嵌入:

import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor

model = AutoModel.from_pretrained(
    'OpenGVLab/InternViT-6B-448px-V1-5',
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True).cuda().eval()

image = Image.open('./examples/image1.jpg').convert('RGB')

image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-448px-V1-5')

pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()

outputs = model(pixel_values)

鸣谢与引用

若在科研中发现此项目有用,请考虑引用以下文献:

@article{chen2023internvl,
  title={InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks},
  author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and Li, Bin and Luo, Ping and Lu, Tong and Qiao, Yu and Dai, Jifeng},
  journal={arXiv preprint arXiv:2312.14238},
  year={2023}
}
@article{chen2024far,
  title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
  author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
  journal={arXiv preprint arXiv:2404.16821},
  year={2024}
}

通过这些改进和调整,InternViT-6B-448px-V1-5在性能上取得了显著提升,是图像特征提取和视觉语言任务的有力工具。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号