Project Icon

Phi-3-mini-4k-instruct-int4-ov

Phi-3-mini-4k-instruct模型的OpenVINO INT4量化与兼容性概览

Phi-3-mini-4k-instruct模型通过NNCF的INT4权重压缩被转换为OpenVINO™ IR格式,增强OpenVINO推理效率。适用于OpenVINO 2024.4.0及以上版本,与Optimum Intel 1.23.1兼容,实现高效模型推理。

LRV-Instruction - 通过稳健指令调优降低多模态模型幻觉风险
GPT4GithubLRV-InstructionMiniGPT4mplug-owl多模态模型开源项目
该项目通过稳健的指令调优,减少大规模多模态模型的幻觉现象,提升其在复杂视觉和语言任务中的表现。LRV-Instruction 数据集包含多种视觉和语言任务数据,通过 GPT-4 生成,提供正面和反面的指令示例,以提高模型的鲁棒性和准确性。最新的研究进展和更新内容不断推进多模态图表理解和图像上下文推理基准的发展,为相关领域提供重要的数据支持。
Qwen2-VL-7B-Instruct - 多分辨率图像和长视频理解的视觉语言模型
GithubHuggingfaceQwen2-VL图像理解多模态开源项目模型视觉语言模型视频处理
Qwen2-VL-7B-Instruct是一个视觉语言模型,支持高分辨率图像和20分钟以上视频的理解。它在多个视觉理解基准测试中表现出色,具备复杂推理和决策能力。该模型可集成到移动设备和机器人中,实现基于视觉环境和文本指令的自动操作。此外,Qwen2-VL-7B-Instruct支持多语言,能理解图像中的多种语言文本。
awesome-model-quantization - 全面的模型量化研究资源
Awesome Model QuantizationBiBenchEfficient_AIGC_RepoGithubMQBenchSurvey of Quantization开源项目
此项目汇集了关于模型量化的各类论文、文档和代码,为研究者提供丰富的参考资源。内容包括二值化和量化方法的调研、基准测试,以及生成模型的压缩和加速技术。项目持续更新,并欢迎对未收录研究成果的贡献。感谢所有已作出贡献的研究者。
Llama-2-Open-Source-LLM-CPU-Inference - 在CPU上运行量化开源LLM的实用指南
C TransformersCPU推理GGMLGithubLangChainLlama-2开源项目
详细介绍如何在本地CPU上使用Llama 2、C Transformers、GGML和LangChain运行量化开源LLM进行文档问答的指南。内容涵盖工具配置、模型下载和依赖管理,帮助团队实现自我管理或私有部署,满足数据隐私和合规要求,并节省GPU实例的高额费用。
low-bit-optimizers - 4位优化器技术减少内存占用 提升大规模模型训练能力
4位优化器AdamWGithub内存效率开源项目神经网络训练量化
Low-bit Optimizers项目实现了一种4位优化器技术,可将优化器状态从32位压缩至4位,有效降低神经网络训练的内存使用。通过分析一阶和二阶动量,该项目提出了改进的量化方法,克服了现有技术的限制。在多项基准测试中,4位优化器实现了与全精度版本相当的准确率,同时提高了内存效率,为大规模模型训练开辟了新途径。
Behemoth-123B-v1-GGUF - 多种量化策略优化文本生成模型效率
Behemoth-123B-v1GithubHuggingface开源项目性能优化文本生成模型模型下载量化
Behemoth-123B-v1-GGUF 项目运用 Llamacpp imatrix 技术进行模型量化,支持从 Q8_0 到 IQ1_M 的多种格式,适应不同硬件环境。项目涵盖多种文件种类,量化质量和大小各异,从高质到低质,满足多样使用需求。用户可根据 RAM 和 VRAM 选择合适文件,平衡速度与质量的追求。Q8_0 格式在嵌入和输出权重方面的质量表现突出,而适用于 ARM 芯片的 Q4_0_X_X 格式则显著提升运算速度,尤其适合低内存硬件。
mistral-nemo-instruct-2407-awq - Mistral-Nemo-Instruct-2407模型的AWQ量化指令版本
GithubHuggingfaceMistralNeMo人工智能大语言模型开源项目模型自然语言处理
mistral-nemo-instruct-2407-awq是Mistral-Nemo-Instruct-2407模型的AWQ量化版本。这个项目通过使用AWQ(Activation-aware Weight Quantization)技术,在保持原有模型性能的基础上,显著降低了模型大小和计算资源需求。该模型适用于各类自然语言处理任务,为开发者和研究人员提供了一个优化的大规模语言模型选择。
Codestral-22B-v0.1-IMat-GGUF - Codestral-22B-v0.1量化模型及IMatrix文件下载指南
Codestral-22B-v0.1GithubHuggingfaceIMatrix下载步骤代码生成开源项目模型量化
Codestral-22B-v0.1项目提供了多种量化版本,包括Q8_0、Q6_K、Q4_K等,并支持IMatrix数据集的应用。用户可通过huggingface-cli下载这些文件,对于较大的文件,可使用gguf-split工具进行合并。更新版本修复了FIM标记缺失,并通过部分量化方法提升性能。项目涵盖的量化文件类型多样且灵活,满足不同的应用需求。
nanodet - 轻量级移动设备实时目标检测模型
GithubNanoDet-Plus实时检测开源项目移动设备轻量级模型高准确率
NanoDet-Plus 是一款超轻量级高精度的无锚目标检测模型,专为移动设备实时检测设计。其模型文件仅有980KB(INT8)或1.8MB(FP16),在ARM CPU上实现97fps检测速度,精度达34.3 mAP@0.5:0.95。NanoDet-Plus 训练友好,GPU内存占用低,支持ncnn、MNN、OpenVINO等多种后端,提供基于ncnn的安卓演示。此模型在COCO数据集上提升了7 mAP,支持多种分辨率和配置,满足不同场景需求。
model-optimization - TensorFlow 模型优化工具包, 支持量化和稀疏化
GithubKerasTensorFlow Model Optimization Toolkit剪枝开源项目机器学习模型量化
TensorFlow Model Optimization Toolkit 提供稳定的 Python API,帮助用户通过量化和稀疏化技术优化机器学习模型,包括针对 Keras 的专用 API。该工具包还提供详细的安装指南、教程和 API 文档,显著提升模型在部署和执行时的性能。该项目由 TensorFlow 团队维护,并遵循其行为准则,开发者可以通过 GitHub 提交问题和贡献代码。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号