Project Icon

bi-encoder_msmarco_bert-base_german

德语语义搜索和文档检索的先进模型 基于MSMARCO数据集训练

这个模型专为德语语义搜索和文档检索设计。它使用机器翻译的MSMARCO数据集训练,结合硬负样本和Margin MSE损失,在非对称搜索任务中达到了先进水平。模型在germandpr-beir基准测试的NDCG指标上表现出色,优于其他多语言模型。它与Sentence Transformer库兼容,可广泛应用于各类信息检索任务。

dragon-plus-query-encoder - DRAGON+ 基于BERT的先进密集检索模型
BERTDRAGON+GithubHuggingface密集检索开源项目模型特征提取自然语言处理
DRAGON+是一个基于BERT的先进密集检索模型,采用非对称双编码器结构。该模型从RetroMAE初始化,并在MS MARCO语料库的增强数据上进行训练。在MARCO Dev和BEIR基准测试中,DRAGON+展现出卓越性能,适用于文本检索和特征提取任务。研究人员和开发者可通过HuggingFace Transformers库轻松使用DRAGON+进行查询和上下文编码。
simlm-msmarco-reranker - SimLM预训练的高性能密集段落检索模型
GithubHuggingfaceSimLM信息检索密集段落检索开源项目模型自然语言处理预训练模型
simlm-msmarco-reranker模型采用简单的瓶颈架构,通过自监督预训练压缩段落信息。在MS-MARCO等数据集上表现优异,超越ColBERTv2等多向量方法。该模型仅需无标签语料库即可训练,适用于缺乏标记数据的场景。研究人员可以使用此模型计算查询和段落的相关性得分,应用于信息检索和文本排序任务。
cross-encoder-russian-msmarco - 高效的俄文跨编码器模型用于信息检索
DeepPavlov/rubert-base-casedDiTy/cross-encoder-russian-msmarcoGithubHuggingface信息检索句子嵌入开源项目文本分类模型
此开源模型基于DeepPavlov/rubert-base-cased,并经过MS-MARCO数据集优化,专用于俄语信息检索,支持高效的查询和段落相关性排序。通过安装sentence-transformers可直接使用,也可通过HuggingFace Transformers扩展文本分类功能,适合需处理俄语复杂文本的用户。
jina-embeddings-v2-base-de - 德英双语文本嵌入模型,优化跨语言相似度计算和检索
GithubHuggingfaceMTEBsentence-transformers开源项目数据分析文本分类模型模型评估
jina-embeddings-v2-base-de是一款针对德语和英语的双语文本嵌入模型。该模型在MTEB基准测试中表现出色,尤其在文本分类、检索和聚类任务中效果显著。模型不仅能处理德语文本,还支持德英跨语言相似度计算,适用于多语言文本检索和相似度匹配等场景。
opensearch-neural-sparse-encoding-doc-v1 - OpenSearch神经稀疏编码模型提升信息检索效率
GithubHuggingfaceOpenSearch开源项目搜索引擎文档检索机器学习模型模型神经稀疏编码
opensearch-neural-sparse-encoding-doc-v1是一款为OpenSearch开发的学习型稀疏检索模型。它能将文档转换为30522维稀疏向量,并采用高效的查询处理方法。该模型经MS MARCO数据集训练,实际性能堪比BM25。模型支持基于Lucene倒排索引的学习型稀疏检索,可通过OpenSearch高级API实现索引和搜索。在BEIR基准测试的13个子集上,该模型展现了优秀的零样本性能,体现了出色的搜索相关性和检索效率。
cross-encoder-mmarco-mMiniLMv2-L12-H384-v1 - 多语言文本重排序模型提升搜索结果准确性
Apache许可证GithubHuggingfacemMiniLMv2开源项目模型模型再排序跨编码器重新上传
mmarco-mMiniLMv2-L12-H384-v1是一个多语言文本重排序模型,基于MiniLM架构设计。它采用12层transformer结构和384维隐藏层,专注于提升文本搜索和排序的准确性。该模型支持多语言输入,适用于搜索结果优化和文档排序等任务,在保持高效性能的同时兼顾了跨语言应用。作为一个开源项目,它为研究人员和开发者提供了强大的文本相关性评分工具。
ms-marco-MiniLM-L-2-v2 - 基于MS Marco训练的跨编码器模型实现高效文本排序
Cross-EncoderGithubHuggingfaceMS Marco信息检索开源项目模型模型性能自然语言处理
这是一个基于MS Marco Passage Ranking任务训练的跨编码器模型。主要用于信息检索领域,通过对查询和候选段落编码实现文本排序。模型在TREC Deep Learning 2019和MS Marco Passage Reranking数据集上展现出优秀性能,NDCG@10和MRR@10指标表现突出。支持Transformers和SentenceTransformers两种调用方式,适用于多种应用场景。
msmarco-MiniLM-L-6-v3 - 基于BERT的句子编码模型实现文本语义向量化和相似度计算
GithubHuggingfacesentence-transformers嵌入模型开源项目模型深度学习自然语言处理语义向量
msmarco-MiniLM-L-6-v3是一个基于sentence-transformers的句子编码模型,将文本映射至384维向量空间。模型基于BERT架构,支持文本相似度计算和聚类分析,可通过sentence-transformers或HuggingFace Transformers框架调用。
e5-base-sts-en-de - 基于E5微调的德语文本语义相似度模型
GithubHuggingfacee5-base多语言模型开源项目微调数据集模型语义文本相似度
这是一个基于多语言E5基础模型开发的德语语义相似度模型。模型通过德语释义语料库、PAWS-X和STSB多语言数据集进行训练,结合多负例排序和余弦相似度两种损失函数。模型在STSB测试集达到0.904的相关性分数,能够有效完成德语文本相似度计算任务。
msmarco-MiniLM-L-12-v3 - 高效语句嵌入模型,适用于语义搜索和文本相似度任务
GithubHuggingfacesentence-transformers向量嵌入开源项目模型特征提取自然语言处理语义相似度
msmarco-MiniLM-L-12-v3是一个sentence-transformers模型,将句子和段落映射到384维密集向量空间。该模型基于BERT架构,使用平均池化,适用于聚类和语义搜索。它可通过sentence-transformers或HuggingFace Transformers库使用,高效生成句子嵌入。这个模型在多个基准测试中表现良好,为自然语言处理应用提供语义表示。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号