Project Icon

Ministral-3b-instruct-GGUF

更高效的量化语言模型,为文本生成带来显著性能提升

Ministral-3b-instruct-GGUF是一个基于llama.cpp的高效量化模型,专为Ministral系列的3B参数设计优化,并从Mistral-7B进行微调。它使用混合数据集,主要用于英语文本生成。通过量化技术,该模型在保持精度的同时,显著减少了存储和计算需求,理想应用于高效文本生成场景。项目遵循Apache 2.0许可协议,以确保合规使用。

Meta-Llama-3-8B-Instruct-GPTQ-4bit - 4位量化Llama 3指令模型实现轻量级高性能自然语言处理
GithubHuggingfacetransformers开源项目机器学习模型模型卡片模型评估自然语言处理
Meta-Llama-3-8B-Instruct-GPTQ-4bit是基于Llama 3架构的4位量化大型语言模型。通过GPTQ量化技术,该模型显著减小了体积和内存占用,同时维持了良好性能。它特别适合在资源受限环境下运行,如移动设备和边缘计算设备。该模型可用于文本生成、问答和对话等多种自然语言处理任务。研究者和开发者可以利用Hugging Face Transformers库轻松部署该模型进行推理或进一步微调。
Llama-3.1-70B-Instruct - Meta推出的多语言大规模语言模型 支持商业与研究应用
GithubHuggingfaceMeta-Llama-3.1-70B多语言大语言模型开源项目指令微调模型预训练
Llama-3.1-70B-Instruct是Meta开发的多语言大型语言模型,支持8种语言,具有128k上下文窗口。模型采用优化的Transformer架构,通过监督微调和人类反馈强化学习训练,提升对话效果。支持文本和代码生成等自然语言任务,适用于商业和研究领域。该模型还可用于改进其他AI模型,包括合成数据生成和知识蒸馏。
aya-23-8B-GGUF - 更精细的文本生成量化选项分析
GithubHuggingfacetransformers开源项目文本生成模型质心量化
项目使用最先进的llama.cpp imatrix量化技术,支持多语言文本生成。多种量化格式,例如Q8_0和紧凑型IQ系列,提供应用的灵活性。用户依据硬件选择文件,以优化性能。创新量化处理为多语言文本生成提供了更高效的实现路径。
Llama-3.2-1B-Instruct - Meta开发的多语言大规模语言模型 适用于对话和检索任务
GithubHuggingfaceLlama 3.2人工智能多语言大语言模型开源项目模型自然语言处理
Llama-3.2-1B-Instruct是Meta开发的新一代多语言大规模语言模型。该模型支持8种语言,包括英语、德语和法语等,有1B和3B两种参数规模。模型采用优化的Transformer架构,使用高达9T的token训练,支持128k上下文长度。它在行业基准测试中表现优异,特别擅长对话、知识检索和摘要任务。Llama-3.2-1B-Instruct适用于构建智能助手、写作辅助等多种商业和研究应用。
Llama-3.1-WhiteRabbitNeo-2-8B-GGUF - Llama-3.1量化模型实现优化文本生成
GithubHuggingfaceLlama-3.1-WhiteRabbitNeo-2-8BRAM开源项目数据集文本生成模型量化
Llama-3.1-WhiteRabbitNeo-2-8B使用llama.cpp进行量化,以优化文本生成功能。项目提供多种量化方案,如Q6_K_L和Q5_K_L,适应不同内存条件,特别推荐Q6_K_L用于嵌入及输出权重以获取优异表现。用户可以使用huggingface-cli快捷下载所需文件,并通过Q4_0_X_X对ARM芯片进行性能优化。此项目提供详细决策指南,帮助选择合适的量化版本。
Meta-Llama-3-70B-Instruct - Meta开发的700亿参数指令微调大语言模型用于对话和生成
GithubHuggingfaceLlama 3Meta人工智能大型语言模型开源项目模型自然语言处理
Meta-Llama-3-70B-Instruct是Meta公司开发的700亿参数大语言模型,经指令微调优化对话能力。模型支持8k上下文长度,采用GQA架构提升推理效率。在多项基准测试中表现出色,具有良好的实用性和安全性。该模型可用于构建对话助手等自然语言生成任务,支持商业和研究用途。模型提供商业许可,可通过Transformers或原生llama3代码库使用。
Meta-Llama-3-70B-Instruct-FP8 - FP8量化优化的Meta-Llama-3-70B指令模型实现高效部署
FP8GithubHuggingfaceLlama3vLLM大语言模型开源项目模型量化
Meta-Llama-3-70B-Instruct-FP8是一个经FP8量化优化的大型语言模型。通过AutoFP8技术,该模型将参数位数从16减至8,大幅降低存储和GPU内存需求。在OpenLLM基准测试中,其平均得分为79.16,与原始模型的79.51相近。这个英语助手式聊天模型适用于商业和研究领域,可通过vLLM后端实现高效部署。
Llama-3.1-405B-Instruct - Meta开发的多语言大规模语言模型 支持商业和研究应用
GithubHuggingfaceLLaMA 3.1Meta人工智能多语言大语言模型开源项目模型自然语言生成
Llama-3.1-405B-Instruct是Meta开发的多语言大规模语言模型系列之一。该模型支持英语、德语、法语等8种语言,具有128K上下文长度。通过监督微调和人类反馈强化学习,该模型旨在提供安全可靠的多语言对话能力。Llama-3.1-405B-Instruct适用于助手式聊天等自然语言生成任务,支持商业和研究应用。
Llama-3.1-8B-Instruct - Meta推出的多语言大规模语言模型Llama 3.1
GithubHuggingfaceLlama 3.1Meta人工智能多语言大语言模型开源项目模型
Llama-3.1-8B-Instruct是Meta开发的多语言大规模语言模型,支持8种语言的对话和自然语言生成。模型采用优化的Transformer架构,具有128K上下文长度,可用于商业和研究领域的文本及代码生成等任务。该模型遵循Llama 3.1社区许可,用户应确保合规使用。
gemma-2-9b-it-abliterated-GGUF - 文本生成性能优化的多种量化方法
ARM芯片GithubHuggingfacegemma-2-9b-it-abliterated嵌入/输出权重开源项目文本生成模型量化
该项目使用llama.cpp进行gemma-2-9b-it-abliterated模型的多种量化实现,能够适应不同的内存和硬件需求。用户可根据设备的RAM和GPU VRAM选择适合的模型文件大小。项目支持多种量化格式,如Q5_K_M和IQ3_M等,以满足不同的性能需求。通过huggingface-cli,用户可以轻松下载特定量化模型,并实现高效推理。建议在LM Studio中运行,并分享使用体验,以帮助优化模型质量和性能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号