Project Icon

Qwen2-VL-72B-Instruct

多模态视觉语言模型实现图像视频理解与交互

Qwen2-VL-72B-Instruct是一款多模态视觉语言模型,具备处理任意分辨率图像和长达20分钟视频的能力。该模型可执行复杂视觉推理任务,支持多语言,并能作为智能代理操控设备。在多项视觉语言基准测试中,Qwen2-VL-72B-Instruct展现出优异的性能。

Qwen2-72B-Instruct - 多语言大规模语言模型 支持131K token超长文本处理
GithubHuggingfaceQwen2-72B-Instruct人工智能大语言模型开源项目机器学习模型自然语言处理
Qwen2-72B-Instruct是一个支持131,072个token超长上下文的指令微调大语言模型。在语言理解、生成、多语言、编码、数学和推理等多项基准测试中表现优异,超越多数开源模型。采用改进的Transformer架构,通过大规模数据预训练和优化。集成YARN技术处理长文本,可通过vLLM部署。
Qwen2-1.5B-Instruct - 性能卓越的开源指令调优语言模型
GithubHuggingfaceQwen2人工智能大语言模型开源项目机器学习模型自然语言处理
Qwen2-1.5B-Instruct是Qwen2系列中的指令调优语言模型,在语言理解、生成、多语言处理、编码和数学推理等方面表现优异。该模型基于改进的Transformer架构,通过大规模预训练和偏好优化,在多项基准测试中超越了大多数开源模型。Qwen2-1.5B-Instruct易于部署,适用于多种AI应用场景,能够高效处理复杂的语言任务。
Qwen2-1.5B-Instruct-AWQ - 探索具备多语言能力和高性能的新一代语言模型
GithubHuggingfaceQwen2多语言能力开源项目性能基准模型训练细节语言模型
Qwen2系列大语言模型在语言理解、生成、多语言处理和推理等多个方面表现出色。Qwen2-1.5B-Instruct模型经过指令微调,相较主流开源和专有模型展现出强竞争力。基于SwiGLU激活和自适应分词器,支持多语言和代码应用。通过Hugging Face Transformers可轻松下载并使用。详细了解性能和速度基准测试的信息请查看相关资料。
Qwen2-1.5B-Instruct-GPTQ-Int4 - 多语言大模型Qwen2,增强理解与推理性能
GithubHuggingfaceQwen2-1.5B-Instruct开源项目性能模型语言模型量化
Qwen2语言模型系列在开源与专有模型对比中展现出色表现。1.5B Instruct模型优化后,适合编程、数学及推理任务,支持多语言和代码处理,并具备改进的分词功能。可高效兼容Hugging Face Transformers平台,推理速度快,内存占用低。
Qwen2-0.5B-Instruct - 轻量级高性能指令对话模型 提升自然语言处理能力
GithubHuggingfaceQwen2人工智能大语言模型开源项目模型深度学习自然语言处理
Qwen2-0.5B-Instruct是Qwen2大语言模型系列中的轻量级成员。该模型采用改进的Transformer架构,在语言理解、生成、多语言处理、编码、数学和推理等方面表现出色,超越多数同等规模的开源模型。经过大规模数据预训练和监督微调,Qwen2-0.5B-Instruct在多项基准测试中展现出优异性能,为开发者提供了一个高效且功能强大的自然语言处理工具。
Qwen2-57B-A14B-Instruct - 新一代指令优化语言模型Qwen2的潜力
GithubHuggingfaceQwen2多语言能力大语言模型开源项目模型模型评价长文本处理
Qwen2-57B-A14B-Instruct是Qwen2系列中采用指令优化的语言模型,包含57亿参数。作为Mixture-of-Experts模型之一,它在多个基准测试中超越了多数开源和私有模型,包括语言理解、生成、多语言处理、编程、数学和推理能力。此模型支持处理长达65,536个tokens,适合解析长文本,依托先进的Transformer架构,并具备多语种适应能力的改进tokenizer。
Qwen2.5-32B-Instruct - 多语言大规模语言模型支持长文本处理和结构化输出
GithubHuggingfaceQwen2.5多语言支持大语言模型开源项目指令微调模型长文本处理
Qwen2.5-32B-Instruct是一款指令微调大语言模型,参数量为325亿。该模型支持29种以上语言,擅长指令跟随、长文本生成和结构化输出。它采用因果语言模型架构,支持131,072个token的上下文长度,可生成8192个token。模型在编码、数学等领域表现出色,并能处理表格等结构化数据。
Qwen2-7B-Instruct - 开源大语言模型支持13万token超长上下文处理
GithubHuggingfaceQwen2多语言能力大语言模型开源项目指令微调模型长文本处理
Qwen2-7B-Instruct是一款开源大语言模型,支持处理131,072个token的超长上下文。该模型在语言理解、生成、多语言能力、编程和推理等多项基准测试中表现优异,性能超过多数开源模型,接近专有模型水平。基于改进的Transformer架构,通过大规模数据预训练和指令微调,Qwen2-7B-Instruct实现了卓越性能。模型提供简便的部署方式,尤其适合长文本处理任务。
LLaVA-Video-7B-Qwen2 - 基于Qwen2的多模态视频理解与交互模型
GithubHuggingfaceLLaVA-VideoQwen2人工智能多模态模型开源项目模型视频指令微调
LLaVA-Video-7B-Qwen2是基于Qwen2语言模型的7B参数多模态模型,专注于视频理解和交互。该模型支持处理最多64帧的视频,可进行图像、多图像和视频的交互。经LLaVA-Video-178K和LLaVA-OneVision数据集训练,具备32K tokens的上下文窗口。在ActNet-QA、EgoSchema和MLVU等多个视频理解基准测试中表现出色。模型提供了简便的代码,方便研究人员生成视频描述和回答相关问题。
Qwen2.5-3B-Instruct - 高性能多语言AI模型支持长文本处理
GithubHuggingfaceQwen2.5人工智能多语言支持大语言模型开源项目模型自然语言处理
Qwen2.5-3B-Instruct是Qwen2.5系列中的指令微调模型,拥有30亿参数。该模型在知识储备、编程和数学能力方面有显著提升,支持29种以上语言,能处理128K tokens的输入并生成8K tokens的输出。模型在指令遵循、长文本生成、结构化数据理解和JSON生成等方面表现优异,并能适应多样化的系统提示。采用因果语言模型架构,结合RoPE、SwiGLU等技术,提供高效的自然语言处理能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号