Project Icon

MIVisionX

AMD开源计算机视觉和机器智能开发工具包

MIVisionX是一套开源的计算机视觉和机器智能开发工具包。它包含优化的OpenVX实现、神经网络模型编译器和多种实用工具。支持ONNX和NNEF格式,可在嵌入式设备到高性能服务器等多种硬件平台上部署计算机视觉和机器学习应用。

MIT licensed doc

MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX delivers highly optimized conformant open-source implementation of the Khronos OpenVX™ and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer supporting ONNX, and Khronos NNEF™ exchange formats. The toolkit allows for rapid prototyping and deployment of optimized computer vision and machine learning inference workloads on a wide range of computer hardware, including small embedded x86 CPUs, APUs, discrete GPUs, and heterogeneous servers.

Latest release

GitHub tag (latest SemVer)

AMD OpenVX™

AMD OpenVX™ is a highly optimized conformant open source implementation of the Khronos OpenVX™ 1.3 computer vision specification. It allows for rapid prototyping as well as fast execution on a wide range of computer hardware, including small embedded x86 CPUs and large workstation discrete GPUs.

Khronos OpenVX™ 1.0.1 conformant implementation is available in MIVisionX Lite

AMD OpenVX™ Extensions

The OpenVX framework provides a mechanism to add new vision functionality to OpenVX by vendors. This project has below listed OpenVX modules and utilities to extend amd_openvx, which contains the AMD OpenVX™ Core Engine.

  • amd_loomsl: AMD Loom stitching library for live 360 degree video applications
  • amd_media: AMD media extension module is for encode and decode applications
  • amd_migraphx: AMD MIGraphX extension integrates the AMD's MIGraphx into an OpenVX graph. This extension allows developers to combine the vision funcions in OpenVX with the MIGraphX and build an end-to-end application for inference.
  • amd_nn: OpenVX neural network module
  • amd_opencv: OpenVX module that implements a mechanism to access OpenCV functionality as OpenVX kernels
  • amd_rpp: OpenVX extension providing an interface to some of the ROCm Performance Primitives (RPP) functions. This extension enables rocAL to perform image augmentation.
  • amd_winml: AMD WinML extension will allow developers to import a pre-trained ONNX model into an OpenVX graph and add hundreds of different pre & post processing vision / generic / user-defined functions, available in OpenVX and OpenCV interop, to the input and output of the neural net model. This extension aims to help developers to build an end to end application for inference.

Applications

MIVisionX has several applications built on top of OpenVX modules. These applications can serve as excellent prototypes and samples for developers to build upon.

Neural network model compiler and optimizer

Neural net model compiler and optimizer converts pre-trained neural net models to MIVisionX runtime code for optimized inference.

rocAL

The ROCm Augmentation Library - rocAL is designed to efficiently decode and process images and videos from a variety of storage formats and modify them through a processing graph programmable by the user.

rocAL is now available as an independent module at https://github.com/ROCm/rocAL. rocAL is deprecated in MIVisionX.

Toolkit

MIVisionX Toolkit is a comprehensive set of helpful tools for neural net creation, development, training, and deployment. The Toolkit provides useful tools to design, develop, quantize, prune, retrain, and infer your neural network work in any framework. The Toolkit has been designed to help you deploy your work on any AMD or 3rd party hardware, from embedded to servers.

MIVisionX toolkit provides tools for accomplishing your tasks throughout the whole neural net life-cycle, from creating a model to deploying them for your target platforms.

Utilities

  • loom_shell: an interpreter to prototype 360 degree video stitching applications using a script
  • mv_deploy: consists of a model-compiler and necessary header/.cpp files which are required to run inference for a specific NeuralNet model
  • RunCL: command-line utility to build, execute, and debug OpenCL programs
  • RunVX: command-line utility to execute OpenVX graph described in GDF text file

Prerequisites

Hardware

[!IMPORTANT] Some modules in MIVisionX can be built for CPU ONLY. To take advantage of Advanced Features And Modules we recommend using AMD GPUs or AMD APUs.

Operating System

Linux

  • Ubuntu - 20.04 / 22.04
  • CentOS - 7
  • RedHat - 8 / 9
  • SLES - 15-SP5

Windows

  • Windows 10 / 11

macOS

  • macOS - Ventura 13 / Sonoma 14

Installation instructions

Linux

The installation process uses the following steps:

Package install

Install MIVisionX runtime, development, and test packages.

  • Runtime package - mivisionx only provides the dynamic libraries and executables
  • Development package - mivisionx-dev/mivisionx-devel provides the libraries, executables, header files, and samples
  • Test package - mivisionx-test provides ctest to verify installation
Ubuntu
sudo apt-get install mivisionx mivisionx-dev mivisionx-test
CentOS / RedHat
sudo yum install mivisionx mivisionx-devel mivisionx-test
SLES
sudo zypper install mivisionx mivisionx-devel mivisionx-test

[!IMPORTANT]

  • Package install supports HIP backend
  • Package install requires OpenCV V4.6 manual install
  • CentOS/RedHat/SLES requires FFMPEG Dev package manual install

Source install

Prerequisites setup script

For your convenience, we provide the setup script, MIVisionX-setup.py, which installs all required dependencies.

python MIVisionX-setup.py --directory [setup directory - optional (default:~/)]
                          --opencv    [OpenCV Version - optional (default:4.6.0)]
                          --ffmpeg    [FFMPEG Installation - optional (default:ON) [options:ON/OFF]]
                          --amd_rpp   [MIVisionX VX RPP Dependency Install - optional (default:ON) [options:ON/OFF]]
                          --neural_net[MIVisionX Neural Net Dependency Install - optional (default:ON) [options:ON/OFF]]
                          --inference [MIVisionX Inference Dependency Install - optional (default:ON) [options:ON/OFF]]
                          --developer [Setup Developer Options - optional (default:OFF) [options:ON/OFF]]
                          --reinstall [Remove previous setup and reinstall (default:OFF)[options:ON/OFF]]
                          --backend   [MIVisionX Dependency Backend - optional (default:HIP) [options:HIP/OCL/CPU]]
                          --rocm_path [ROCm Installation Path - optional (default:/opt/rocm ROCm Installation Required)]

[!NOTE]

  • Install ROCm before running the setup script
  • This script only needs to be executed once
  • ROCm upgrade requires the setup script rerun
Using MIVisionX-setup.py
  • Clone MIVisionX git repository

    git clone https://github.com/ROCm/MIVisionX.git
    

[!IMPORTANT] MIVisionX has support for two GPU backends: OPENCL and HIP

  • Instructions for building MIVisionX with the HIP GPU backend (default backend):

    • run the setup script to install all the dependencies required by the HIP GPU backend:
    cd MIVisionX
    python MIVisionX-setup.py
    
    • run the below commands to build MIVisionX with the HIP GPU backend:
    mkdir build-hip
    cd build-hip
    cmake ../
    make -j8
    sudo make install
    
    make test
    
  • Instructions for building MIVisionX with OPENCL GPU backend

Windows

  • Windows SDK
  • Visual Studio 2019 or later
  • Install the latest AMD drivers
  • Install OpenCL SDK
  • Install OpenCV 4.6.0
    • Set OpenCV_DIR environment variable to OpenCV/build folder
    • Add %OpenCV_DIR%\x64\vc14\bin or %OpenCV_DIR%\x64\vc15\bin to your PATH

Using Visual Studio

  • Use MIVisionX.sln to build for x64 platform

[!IMPORTANT] Some modules in MIVisionX are only supported on Linux

macOS

macOS build instructions

[!IMPORTANT] macOS only supports MIVisionX CPU backend

Verify installation

Linux / macOS

  • The installer will copy
    • Executables into /opt/rocm/bin
    • Libraries into /opt/rocm/lib
    • Header files into /opt/rocm/include/mivisionx
    • Apps, & Samples folder into /opt/rocm/share/mivisionx
    • Documents folder into /opt/rocm/share/doc/mivisionx
    • Model Compiler, and Toolkit folder into /opt/rocm/libexec/mivisionx

Verify with sample application

Canny Edge Detection

export PATH=$PATH:/opt/rocm/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib
runvx /opt/rocm/share/mivisionx/samples/gdf/canny.gdf

[!NOTE]

  • More samples are available here
  • For macOS use export DYLD_LIBRARY_PATH=$DYLD_LIBRARY_PATH:/opt/rocm/lib

Verify with mivisionx-test package

Test package will install ctest module to test MIVisionX. Follow below steps to test packge install

mkdir mivisionx-test && cd mivisionx-test
cmake /opt/rocm/share/mivisionx/test/
ctest -VV

Windows

  • MIVisionX.sln builds the libraries & executables in the folder MIVisionX/x64

  • Use RunVX to test the build

    ./runvx.exe ADD_PATH_TO/MIVisionX/samples/gdf/skintonedetect.gdf
    

Docker

MIVisionX provides developers with docker images for Ubuntu 20.04 / 22.04. Using docker images developers can quickly prototype and build applications without having to be locked into a single system setup or lose valuable time figuring out the dependencies of the underlying software.

Docker files to build MIVisionX containers and suggested workflow are available

MIVisionX docker

Documentation

Run the steps below to build documentation locally.

  • sphinx documentation
cd docs
pip3 install -r sphinx/requirements.txt
python3 -m sphinx -T -E -b html -d _build/doctrees -D language=en . _build/html
  • Doxygen
doxygen .Doxyfile

Technical support

Please email mivisionx.support@amd.com for questions, and feedback on MIVisionX.

Please submit your feature requests, and bug reports on the GitHub issues page.

Release notes

Latest release version

GitHub tag (latest SemVer)

Changelog

Review all notable changes with the latest release

Tested configurations

  • Windows 10 / 11
  • Linux distribution
    • Ubuntu - 20.04 / 22.04
    • CentOS - 7
    • RHEL - 8 / 9
    • SLES - 15-SP5
  • ROCm: rocm-core - 6.1.0.60100
  • RPP - 1.5.0.60100
  • miopen-hip - 3.1.0.60100
  • migraphx - 2.9.0.60100
  • OpenCV - 4.6.0
  • FFMPEG - n4.4.2
  • Dependencies for all the above packages
  • MIVisionX Setup Script -
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号