Project Icon

v5-Eagle-7B-HF

使用Huggingface Transformers库实现高效文本生成

项目基于Huggingface Transformers库实现RWKV-5 Eagle 7B模型的高效功能,无论在CPU还是GPU上均能生成多样化的自然语言。提供详细的使用指南,适用多种场景,如回答问题和生成语言描述,适合高质量文本生成需求者,为自然语言处理任务提供支持。

v5-Eagle-7B-HF项目介绍

项目背景

v5-Eagle-7B是由RWKV推出的一个先进的自然语言处理(NLP)模型,主要运行于Huggingface(简称HF)Transformers库中。这个项目的主要目标是利用模型执行各种语言生成任务,如回答问题、内容创建和语言翻译等。

使用许可证

项目采用了Apache 2.0许可证。这意味着用户可以自由使用、修改和分发,但需要在软件中保留原始的版权声明和许可证声明。

模型特性

v5-Eagle-7B模型是基于RWKV和Huggingface的协作开发,旨在提高模型在处理自然语言任务中的性能。虽然目前尚未针对指令微调,但模型已经能够在多种场景下实现良好的表现。

使用说明

在CPU上运行

要在CPU上运行v5-Eagle-7B模型,可使用以下Python代码。该代码展示了如何通过生成提示语并进行自然语言生成:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_prompt(instruction, input=""):
    instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
    input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
    if input:
        return f"""Instruction: {instruction}

Input: {input}

Response:"""
    else:
        return f"""User: hi

Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.

User: {instruction}

Assistant:"""

model = AutoModelForCausalLM.from_pretrained("RWKV/HF_v5-Eagle-7B", trust_remote_code=True).to(torch.float32)
tokenizer = AutoTokenizer.from_pretrained("RWKV/HF_v5-Eagle-7B", trust_remote_code=True)

text = "请介绍北京的旅游景点"
prompt = generate_prompt(text)

inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(inputs["input_ids"], max_new_tokens=333, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))

在GPU上运行

在GPU上运行的方法类似,但需要指定使用的浮点精度和设备:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_prompt(instruction, input=""):
    ...
model = AutoModelForCausalLM.from_pretrained("RWKV/HF_v5-Eagle-7B", trust_remote_code=True, torch_dtype=torch.float16).to(0)
tokenizer = AutoTokenizer.from_pretrained("RWKV/HF_v5-Eagle-7B", trust_remote_code=True)

text = "介绍一下大熊猫"
prompt = generate_prompt(text)

inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))

批量推断

项目还支持批量推断,这对于处理多个输入非常有用:

texts = ["请介绍北京的旅游景点", "介绍一下大熊猫", "乌兰察布"]
prompts = [generate_prompt(text) for text in texts]

inputs = tokenizer(prompts, return_tensors="pt", padding=True)
outputs = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )

for output in outputs:
    print(tokenizer.decode(output.tolist(), skip_special_tokens=True))

项目总结

v5-Eagle-7B项目是一个强大而灵活的NLP工具,允许用户通过HF Transformers库在多种场景下进行高效的自然语言处理任务。其易于使用的API和强大的生成能力使其成为开发人员和研究人员的理想选择。

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号