Project Icon

wd-v1-4-swinv2-tagger-v2

带有改进推理和标签分类性能的新特性

模型WD 1.4 SwinV2 Tagger V2改进了标签分类功能,使用Danbooru图像集进行训练,V2.1版本增强了ONNXRuntime兼容性,并与timm兼容,支持多批次推理。使用TRC项目提供的TPU部署,提升模型的性能和算法效果。

swin-base-patch4-window7-224 - 微软开源分层视觉Transformer图像分类模型
GithubHuggingfaceImageNetSwin Transformer图像分类开源项目模型深度学习视觉模型
Swin Transformer是Microsoft开发的图像分类模型,通过层级特征图构建和局部窗口注意力机制实现线性计算复杂度。模型在ImageNet-1k数据集上完成224x224分辨率训练,可作为通用主干网络支持图像分类和密集识别任务。其创新的窗口划分策略使模型在处理大尺寸图像时具有更高的效率。
ese_vovnet39b.ra_in1k - 高效实时的VoVNet-v2图像分类解决方案
GithubHuggingfaceImageNet-1kVoVNet-v2timm图像分类开源项目模型特征提取
VoVNet-v2是一种预训练于ImageNet-1k的图像分类模型,含高效计算和低能耗优点,并采用RandAugment优化。适用于特征骨干网络,支持图像分类、特征提取和图像嵌入。其关键性能包括24.6M参数、7.1 GMACs等。通过`timm`库,用户可以实现高效的图像分类和特征提取。模型使用ResNet Strikes Back的训练方案,提高了准确度和应用多样性。
cards-top_right_swin-tiny-patch4-window7-224-finetuned-v2_more_data - 微软Swin Transformer图像分类模型的性能优化实践
本项目展示了一个基于Swin Transformer架构的图像分类模型优化案例。经过50轮训练后,模型准确率从43.37%提升至62.69%,验证损失降低至0.92。优化过程采用了Adam优化器和线性学习率策略,实现了稳定的性能提升。
swin-base-patch4-window7-224-in22k - 基于shifted windows的分层视觉Transformer图像处理模型
GithubHuggingfaceSwin Transformer图像分类图像识别开源项目模型深度学习计算机视觉
Swin Transformer是一个在ImageNet-21k数据集上预训练的视觉模型,通过shifted windows机制实现局部特征提取,降低计算复杂度。模型采用分层特征图构建和局部注意力计算方式,适用于图像分类和密集识别任务,计算复杂度与输入图像大小呈线性关系
efficientnetv2_rw_m.agc_in1k - EfficientNetV2模型:图像分类与多功能特征提取
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型模型使用
EfficientNetV2是一个在timm库中实现的高效图像分类模型。通过使用以ResNet Strikes Back为基础的训练策略和SGD优化器(带Nesterov动量),结合自适应梯度剪裁,模型在ImageNet-1k数据集上进行训练。这一架构轻量且强大,支持包括图像分类、特征提取和图像嵌入的多种图像处理任务。
swinv2_tiny_window8_256.ms_in1k - Swin Transformer V2轻量级图像分类与特征提取模型
GithubHuggingfaceImageNet-1kSwin Transformer V2timm图像分类开源项目模型特征提取
swinv2_tiny_window8_256.ms_in1k是基于Swin Transformer V2架构的轻量级图像分类模型,在ImageNet-1k数据集上预训练。该模型拥有2830万参数,6.0 GMACs计算量,支持256x256像素输入。它可用于图像分类、特征图提取和图像嵌入等任务,提供高效的视觉特征提取能力。研究人员和开发者可通过timm库轻松加载此预训练模型,应用于多种计算机视觉项目。
cards_bottom_right_swin-tiny-patch4-window7-224-finetuned-v2 - 基于Swin Transformer图像分类模型实现60.79%精度
GithubHuggingfacemicrosoft/swin-tiny-patch4-window7-224图像分类开源项目机器学习优化模型模型训练深度学习
这是一个基于microsoft/swin-tiny-patch4-window7-224架构的图像分类模型。经过30轮训练迭代,模型采用128批量大小,5e-05学习率,结合Adam优化器与线性学习率调度策略。模型性能从初始的41.56%提升至60.79%,实现稳定的分类效果。
Qwen2-VL-2B-Instruct-AWQ - 支持多分辨率的多语言多模态视觉模型
GithubHuggingfaceQwen2-VL多语言支持开源项目性能评估模型模型架构视觉理解
Qwen2-VL是一款先进的多模态模型,具备卓越的图像和视频理解能力,并能够处理多语言文本。其支持动态分辨率处理,适用于移动设备和机器人自动化操作。模型特色包括旋转位置嵌入和高效量化模型,提高推理速度和内存利用率,适合多种视觉任务如图像描述和视频分析。
Qwen2-VL-72B-Instruct-GPTQ-Int8 - 改进视觉和文本处理能力的多模态模型
GithubHuggingfaceQwen2-VL多模态多语言支持开源项目模型视觉理解视频分析
本项目是一个多模态视觉语言模型,具有高效的图像理解和多语言支持。它能够处理超过20分钟的视频内容,并可整合到移动设备和机器人中进行自动化操作。通过应用动态分辨率处理和多模态旋转位置嵌入,该模型提升了视觉处理能力。此外,项目还提供了便于快速部署的工具包,助力处理各类视觉任务。
NSFW-gen-v2 - 无限制AI文本到图像生成器 支持3D渲染和多语言
3D渲染GithubHuggingfaceNSFW-gen-v2图像生成开源项目成人内容无审查模型
NSFW-gen-v2是UnfilteredAI开发的文本到图像生成器,能创建多样化图像,包括成人内容。模型拥有34.7亿参数,使用FP16张量,支持无审查输出和3D风格渲染。兼容英语、葡萄牙语和泰语,适合需要不受限制图像生成的应用。使用时需注意遵守相关法律和年龄限制。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号