Project Icon

CodeLlama-13B-GGUF

GGUF格式的创新特点与适用范围

Meta推出的GGUF格式替代了GGML,优化了编码生成的效能和兼容性。它增强了标记处理和元数据支持,并适用于多种程序和库,如llama.cpp和text-generation-webui。这种格式推动了编码模型的发展,提供了便于GPU加速和降低内存需求的量化模型,提升了开发者的灵活性和解决方案质量。

Meta-Llama-3-70B-Instruct-abliterated-v3.5-IMat-GGUF - 提升量化效率及IMatrix集成以增强文本生成性能
GithubHuggingfaceIMatrixMeta-Llama-3-70B-Instruct-abliterated-v3.5开源项目文本生成模型量化
本项目应用Llama.cpp的量化技术结合IMatrix数据集,对Meta-Llama-3-70B-Instruct-abliterated-v3.5模型进行优化。支持BF16到Q2_K等多种量化格式,用户可根据需求选择下载不同版本,适用于多种文本生成场景。IMatrix集成提升了低比特位的性能表现,适合现代高效计算需求。提供全面的下载指南和FAQ,帮助用户有效地理解和使用文件,实现文本生成任务的高效推理。
Llama-3.2-3B-Instruct-uncensored-GGUF - 量化的语言模型版本,促进文本生成与信息获取
GithubHugging FaceHuggingfaceLlama-3.2-3B-Instruct-uncensored内幕交易开源项目文本生成模型量化
Llama-3.2-3B-Instruct-uncensored-GGUF项目是一个未过滤的量化语言模型版本,增强了文本生成的多样性和信息获取效率。通过llama.cpp的量化处理,该模型在保持高效性能的同时输出高质量响应。其特点包括在敏感话题上的信息提供更全面,响应拒绝次数少。支持研究和开发中的多场景应用,用户可以在相关平台上进行交互,实现从文本生成到信息提取的多领域应用。
dolphin-2.6-mistral-7B-GGUF - 兼容多平台的量化AI模型格式
Dolphin 2.6 Mistral 7BGithubHuggingface开源项目文件下载模型模型兼容性深度学习框架量化
该项目提供多平台兼容的GGUF格式模型文件,包括对GGML的量化替代方案,支持多种比特量化,适用于Windows、Linux和macOS平台的模型推理和GPU加速。用户可以选择合适的量化参数文件,并通过多种工具和命令行进行下载和运行,提升模型推理性能。
codegemma-1.1-7b-it-GGUF - 文本生成的多样化量化模型选择
GithubHugging FaceHuggingfacetransformers开源项目文本生成模型模型下载量化
项目使用llama.cpp进行模型量化,提供多种模型版本以优化文本生成性能。用户可以依据硬件配置选择合适的模型版本,推荐选用Q6_K等高质量量化格式。多样化的模型版本在内存占用和性能表现之间提供灵活选择,适用于多种硬件平台。I-quant模型在较低量化级别上表现优异,适合需要高效运行的场景。
Behemoth-123B-v1-GGUF - 多种量化策略优化文本生成模型效率
Behemoth-123B-v1GithubHuggingface开源项目性能优化文本生成模型模型下载量化
Behemoth-123B-v1-GGUF 项目运用 Llamacpp imatrix 技术进行模型量化,支持从 Q8_0 到 IQ1_M 的多种格式,适应不同硬件环境。项目涵盖多种文件种类,量化质量和大小各异,从高质到低质,满足多样使用需求。用户可根据 RAM 和 VRAM 选择合适文件,平衡速度与质量的追求。Q8_0 格式在嵌入和输出权重方面的质量表现突出,而适用于 ARM 芯片的 Q4_0_X_X 格式则显著提升运算速度,尤其适合低内存硬件。
gemma-2-27b-it-GGUF - gemma-2-27b-it模型的GGUF量化版本适配多种硬件配置
GGUF格式GithubHuggingfacegemma-2-27b-it大语言模型开源项目文件下载模型模型量化
本项目提供gemma-2-27b-it模型的多种GGUF量化版本,涵盖从高质量Q8_0到紧凑型IQ2_M。用户可根据RAM和VRAM选择适合的模型。项目包含下载指南、模型选择建议和性能对比,便于部署和使用这些优化模型。
Hermes-3-Llama-3.1-70B-Uncensored-GGUF - 静态与多变量量化技术在Hermes-3-Llama模型中的应用
GithubHermes-3-Llama-3.1-70B-UncensoredHugging FaceHuggingfacetransformers工作站开源项目模型量化
Hermes-3-Llama-3.1-70B-Uncensored项目提供多种量化文件类型,包括更优的IQ-quants,适用于不同的性能需求。用户可参考TheBloke的材料了解GGUF文件的使用方法。不同的量化文件按大小排序,推荐使用性能较佳的Q4_K_S文件。项目特别感谢nethype GmbH提供的技术支持。
Meta-Llama-3-8B-Instruct-GGUF - Llama 3系列8B指令模型性能超越前代70B版本
GithubHuggingfaceLlama 3Meta人工智能大语言模型开源项目模型自然语言处理
Meta发布的Llama 3系列8B指令模型在15万亿多样化语料上训练,代码数据量是前代的4倍。采用GQA技术提升大上下文处理能力,性能超越Llama 2的70B版本。该模型在对话、问答和编程等任务表现出色,支持自定义系统提示以适应不同应用场景。
Llama-3.2-1B-Instruct-GGUF - 通过量化优化技术改进多语言文本生成
GithubHuggingfaceLLMLlama 3.2Meta开源项目模型社区许可证许可协议
本项目采用llama.cpp和imatrix量化技术,提高了多语言文本生成的能力。结合Bartowski的校准文件,以及IQ和Q系列多种量化方法,明显降低了模型的困惑度并提高了文本生成的准确性。这些优化在多种条件下保持高效,且降低了存储空间的需求,提供更灵活的AI应用优化和部署方案。
gguf-tools - 处理和解析GGUF文件的实用工具库
APIGGUFGithub开源项目机器学习模型比较量化
该工具库正在开发中,专注于处理和解析GGUF文件。它提供详细的键值对和张量信息展示、文件比较和张量细节检查等功能。gguf-tools旨在为机器学习领域提供多种实现方案,帮助理解和使用GGUF格式,提升模型操作和分析的效率。该工具展示了如何在实际应用中使用库,并将来计划加入更多有趣且实用的示例和功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号