Project Icon

Mythalion-13B-AWQ

利用高效的低比特量化提升Transformer推理速度

该项目提供高效的AWQ模型文件,支持4比特量化在多用户环境中实现快速Transformer推理。虽然未量化模型的整体吞吐量更高,但通过使用更小的GPU,AWQ模型显著降低了部署成本,例如仅需1台48GB GPU即可运行70B模型。该模型适合需要高吞吐量并行推理的场景,用户可借助vLLM或AutoAWQ轻松调用以降低成本并简化部署。

Meta-Llama-3-70B-Instruct-abliterated-v3.5-IMat-GGUF - 提升量化效率及IMatrix集成以增强文本生成性能
GithubHuggingfaceIMatrixMeta-Llama-3-70B-Instruct-abliterated-v3.5开源项目文本生成模型量化
本项目应用Llama.cpp的量化技术结合IMatrix数据集,对Meta-Llama-3-70B-Instruct-abliterated-v3.5模型进行优化。支持BF16到Q2_K等多种量化格式,用户可根据需求选择下载不同版本,适用于多种文本生成场景。IMatrix集成提升了低比特位的性能表现,适合现代高效计算需求。提供全面的下载指南和FAQ,帮助用户有效地理解和使用文件,实现文本生成任务的高效推理。
Meta-Llama-3.1-8B-Instruct-FP8-KV - FP8量化策略提升模型计算效率
FP8GithubHuggingfaceMeta-Llama-3.1-8B-InstructQuark开源项目模型部署量化策略
项目利用Quark工具对模型的线性层进行FP8量化,实现更高效的部署和轻微的推理性能提升。使用Pile数据集进行校准,提高模型性能。支持单GPU和多GPU环境,便于在vLLM兼容后端进行高效部署,Perplexity指标略有提升。
Meta-Llama-3.1-405B-Instruct-GPTQ-INT4 - Meta Llama 3.1模型的INT4量化版本实现多语言对话
GithubHuggingfaceLlama 3.1大语言模型开源项目推理部署模型模型量化深度学习
Meta-Llama-3.1-405B-Instruct量化模型通过AutoGPTQ技术将FP16压缩至INT4格式,实现了更高效的多语言对话能力。模型集成了transformers、AutoGPTQ、TGI和vLLM等多种推理框架,方便灵活部署。经过基准测试验证,该社区驱动的量化版本在降低内存占用的同时保持了原有性能水平。
SuperNova-Medius-GGUF - 多种量化方法提升模型性能与适配性
ARMGithubHuggingfaceRAMSuperNova-Medius开源项目性能模型量化
SuperNova-Medius-GGUF项目通过llama.cpp工具对SuperNova-Medius模型进行多种量化处理,是以多样化版本满足不同应用的需求。精细化量化过程依托imatrix选项,提供了多种质量和性能的选择。用户可以根据自身硬件环境,如ARM架构设备、低RAM或需最大化GPU VRAM使用的场景,选择相应版本。此外,项目为文件选择提供了详细指南,确保用户能够找到适合其系统性能的最佳模型版本。这些量化技术为不同硬件上的文本生成任务提供了广泛的支持。
LongWriter-llama3.1-8b-GGUF - 长上下文自然语言生成的突破与模型量化技术
GithubHuggingfaceLongWriter-llama3.1-8btransformers开源项目模型模型下载量化量化格式
LongWriter-llama3.1-8b-GGUF项目通过llama.cpp实现imatrix量化,为长上下文自然语言生成提供全面解决方案。支持英文和中文,涵盖多种量化类型,满足不同硬盘和速度需求。用户可根据VRAM和RAM选择合适的模型文件,获取最佳运行速度或质量。项目兼容多种硬件,包括Nvidia的cuBLAS、AMD的rocBLAS和Apple Metal,并提供I-quant与K-quant使用指南。文件可通过huggingface-cli下载,帮助用户提高自然语言处理效率。
Qwen1.5-4B - 一款具备多语言功能的增强型Transformer模型
GithubHuggingfaceQwen1.5参数规模多语言支持开源项目模型语言模型转换器架构
Qwen1.5-4B是一款多语言Transformer模型,具有8种模型规模,支持32K上下文长度且无需信任远程代码。其设计基于SwiGLU激活和多重注意力机制,并通过改进型分词器实现高效多样的文本生成。
Qwen1.5-MoE-A2.7B - 提高模型生成速度与资源效率的Transformer架构MoE语言模型
GithubHuggingfaceMixture of ExpertsQwen1.5-MoE-A2.7Btransformers开源项目文字生成模型语言模型
Qwen1.5-MoE-A2.7B是一种基于Transformer架构和专家混合(MoE)的大规模预训练语言模型,通过重构密集模型来增强性能。它推理速度提高1.74倍,训练资源仅为类似模型的25%。建议在使用中结合SFT或RLHF等后训练技术,以进一步改进文本生成能力。详细信息及源码可在博客和GitHub仓库中查看。
MythoMax-L2-13b - 创新张量合并技术打造的AI语言模型
GithubHuggingfaceMythoMax人工智能开源项目模型模型合并角色扮演语言模型
MythoMax-L2-13b通过张量类型合并技术,将MythoLogic-L2模型与Huginn模型进行融合。该模型采用Alpaca格式构建,每层应用独特比例实现结构一致性,支持角色扮演与故事创作等任务。目前已发布GGUF、GPTQ、AWQ等多种量化版本。
Qwen2.5-7B-Instruct-GGUF - Qwen2.5-7B-Instruct的多样化量化方案增强模型适应性
ARM芯片GithubHuggingfaceQwen2.5-7B-Instruct开源项目性能优化模型训练数据集量化
项目采用llama.cpp的最新量化方案对Qwen2.5-7B-Instruct模型进行优化,提供灵活的量化格式以匹配各类硬件环境。更新的上下文长度管理与先进的分词器,无论选择传统的Q-K量化还是新兴的I-quant,各种档次的文件都能帮助设备实现性能与速度的平衡。尤其是对ARM架构的专门优化,即便在低RAM环境下,用户也能凭借有限的资源获得可行的使用体验。
xFasterTransformer - 高效的大规模语言模型推理优化方案
GithubPython APIXeonxFasterTransformer大语言模型开源项目高性能
xFasterTransformer是一个为X86平台优化的大规模语言模型(LLM)推理解决方案,支持多插槽和节点的分布式运行,适用于大型模型推理。它提供C++和Python API,支持例如ChatGLM、Llama、Baichuan等流行的LLM模型,并可通过PyPI、Docker或从源代码进行安装。项目附带详细文档、API使用示例、基准测试代码和Web演示,确保用户能充分利用其高性能和高扩展性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号