Project Icon

Open_Gpt4_8x7B_v0.2-GGUF

提供多格式兼容量化模型,提升推理效率

此项目提供GGUF格式的多精度量化模型文件,旨在优化CPU和GPU的推理效率。作为GGML的替代,GGUF与多种第三方UI和库兼容,支持多平台AI模型的高效运行。项目包含2至8位量化模型以满足不同精度与内存要求,适合多种场景需求。通过详细的下载指导,用户能快速找到适合的模型文件,并利用llama.cpp、text-generation-webui等高性能运行时实现模型在不同硬件上的高效推理。

Llama-3-Smaug-8B-GGUF - Llama-3-Smaug-8B模型的GGUF格式文件 支持多级量化
GGUF模型GithubHuggingfaceLlama-3-Smaug-8B人工智能助手开源项目文本生成模型量化
Llama-3-Smaug-8B-GGUF项目提供abacusai/Llama-3-Smaug-8B模型的GGUF格式文件,支持2-bit至8-bit多级量化。项目介绍了使用llama.cpp加载模型的方法,并概述了GGUF格式及其兼容工具。该资源有助于用户了解GGUF格式,选择适合的工具进行本地部署和文本生成应用。
gemma-2-2b-it-GGUF - Google Gemma模型的GGUF量化版本支持多种位宽
GGUFGithubHuggingface开源工具开源项目推理加速模型语言模型量化
本项目提供Google Gemma-2-2b-it模型的GGUF格式量化版本,支持2-bit至8-bit多种位宽。GGUF是llama.cpp团队开发的新格式,取代了旧有的GGML。该项目与多种支持GGUF的工具兼容,如llama.cpp和LM Studio等,这些工具提供命令行界面、服务器和图形用户界面等多种使用方式,并支持GPU加速,实现了高效灵活的本地模型应用。
guanaco-65B-GGUF - 解析新型GGUF格式及其多平台兼容性
GPU加速GithubGuanaco 65BHuggingfaceTim Dettmers开源项目模型模型格式量化
此项目涵盖了2023年8月21日由llama.cpp团队推出的GGUF格式,作为已停用的GGML格式的替代方案。该项目提供了多种比特的量化文件,适用于CPU和GPU的推理需求。用户能够通过多种客户端和库,如llama.cpp和text-generation-webui,下载并高效使用这些模型,提供本地及网络接口支持。所支持的量化方法包括GGML_TYPE_Q4_K,提供质量与性能的平衡。
Qwen2-7B-Instruct-GGUF - 高效量化AI模型 多平台支持 便捷本地部署
GGUFGPU加速GithubHuggingfaceQwen2-7B-Instruct开源项目文本生成模型模型量化
Qwen2-7B-Instruct-GGUF是Qwen2-7B-Instruct模型的GGUF格式量化版本。该模型支持2至8比特量化,可在llama.cpp、LM Studio等多个平台上本地部署。GGUF格式具有高效性能和广泛兼容性,便于在个人设备上进行AI文本生成。该项目为用户提供了多种比特率的量化选项,以适应不同的硬件环境和性能需求。
Llama-3.2-1B-Instruct-GGUF - 高效量化的指令微调语言模型GGUF版本
GGUFGithubHuggingfaceLlama大语言模型开源项目文本生成模型量化
该项目提供Llama-3.2-1B-Instruct模型的GGUF格式量化版本,支持2至8位量化。GGUF是llama.cpp团队推出的新格式,取代了旧有的GGML。这一版本兼容多种支持GGUF的工具和库,如llama.cpp、LM Studio等,便于高效本地部署和推理。对于需要在资源受限环境中使用大型语言模型的开发者来说,此项目提供了实用的解决方案。
Phind-CodeLlama-34B-v2-GGUF - 利用GGUF格式提升模型性能,兼容多平台GPU加速
CodeLlamaGPU加速GithubHuggingface开源项目文本生成格式转换模型模型量化
Phind's CodeLlama 34B v2采用GGUF格式,由llama.cpp团队在2023年8月21日推出替代GGML。GGUF实现了更优的标记化及特殊标记支持,并且具有可扩展性。兼容多种第三方界面与库(如text-generation-webui和KoboldCpp),并支持GPU加速。量化模型在保持高质量的同时降低了资源占用,适用多种场景,建议使用Q4_K_M与Q5_K_M模型以实现最佳性能及质量平衡。
Llama-3-8B-Instruct-32k-v0.1-GGUF - Llama-3 8B指令模型GGUF版本支持多位量化及广泛应用
GGUFGithubHuggingfaceLlama-3开源AI开源项目模型自然语言处理量化模型
本项目提供Llama-3-8B-Instruct-32k-v0.1模型的GGUF格式文件。GGUF是llama.cpp团队开发的新格式,取代了旧有的GGML。该模型支持2至8位量化,主要用于文本生成。它与多款主流本地运行框架和界面工具兼容,如llama.cpp、LM Studio和text-generation-webui等。这些工具普遍支持GPU加速,使模型能够适应多样化的应用需求。
Llama-3-Groq-8B-Tool-Use-GGUF - 高性能文本生成模型的GGUF格式优化版
GGUFGithubHuggingfaceLlama-3-Groq-8B-Tool-Use人工智能开源项目文本生成模型量化模型
Llama-3-Groq-8B-Tool-Use模型的GGUF格式版本由MaziyarPanahi量化优化。GGUF作为llama.cpp团队推出的新格式,取代了旧有的GGML。该模型兼容多种客户端和库,如llama.cpp、LM Studio等,支持GPU加速和跨平台运行。GGUF格式优化后的模型能够提供高效的本地文本生成功能,适用于多种应用场景。
CodeLlama-13B-GGUF - GGUF格式的创新特点与适用范围
CodeLlama 13BGithubHuggingfaceMeta开源项目机器学习模型模型格式量化
Meta推出的GGUF格式替代了GGML,优化了编码生成的效能和兼容性。它增强了标记处理和元数据支持,并适用于多种程序和库,如llama.cpp和text-generation-webui。这种格式推动了编码模型的发展,提供了便于GPU加速和降低内存需求的量化模型,提升了开发者的灵活性和解决方案质量。
llama-30b-supercot-GGUF - Llama 30B Supercot GGUF:多种量化格式与GPU加速
GPU加速GithubHuggingfaceLlama 30B Supercot开源项目新格式模型模型文件量化
GGUF格式的Llama 30B Supercot模型支持GPU加速,具备多个量化选项。由ausboss创建,提供多种格式适应不同需求,推荐Q4_K_M格式以实现性能与质量的平衡。GGUF是GGML的替代格式,兼容多种用户界面和库,如llama.cpp、text-generation-webui,适合于机器学习和AI领域应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号