Project Icon

TinyLlama-1.1B-Chat-v0.3-AWQ

高效量化方法助力多用户场景下的快速推理

该项目采用AWQ低位量化方法,提高了多用户服务器场景下的Transformers推理速度和效率。相比GPTQ,AWQ在减少部署成本的同时,能够使用更小的GPU进行推理。TinyLlama模型支持4-bit量化,并兼容vLLM与Huggingface TGI插件,高效应对高并发需求。在Zhang Peiyuan的开发下,该模型适合计算和内存资源有限的开源项目部署。

Llama-3.1-8B-Lexi-Uncensored-V2-GGUF - Llama-3.1-8B-Lexi开源量化模型概览
GithubHuggingfaceLlama-3.1-8B-Lexi-Uncensored-V2开源项目权重模型模型文件量化高质量
项目介绍了Llama-3.1-8B-Lexi不同量化模型版本,涵盖从高性能到轻量化版本。基于llama.cpp的imatrix量化选项,模型支持在LM Studio中运行。项目提供从完整F32权重到轻量化IQ2_M版本的多种选择,适合不同内存及质量需求的用户,并提供详细的下载和性能指引,帮助在系统RAM与GPU VRAM间找到平衡。
AutoAWQ - 面向大型语言模型的高效4位量化框架
AutoAWQGPU加速Github大语言模型开源项目推理量化
AutoAWQ是一个专门针对大型语言模型的4位量化框架,通过实现激活感知权重量化算法,可将模型速度提升3倍,同时减少3倍内存需求。该框架支持Mistral、LLaVa、Mixtral等多种模型,具备多GPU支持、CUDA和ROCm兼容性以及PEFT兼容训练等特性。AutoAWQ为提升大型语言模型的推理效率提供了有力工具。
llama2.rs - Rust开发的高效Llama2 CPU推理库
CPU推理GithubLlama2RustSIMD开源项目量化
llama2.rs是一个用Rust开发的Llama2 CPU推理库,专注于提供高性能的推理能力。项目支持4位GPT-Q量化、批量预填充提示标记、SIMD加速和内存映射等技术,实现了70B模型的即时加载。通过Python API,开发者可在普通台式机上运行70B Llama2模型(1 token/s)和7B模型(9 tokens/s)。该项目为大规模语言模型的CPU推理提供了高效且灵活的开源解决方案。
Llama-3.2-1B - Meta推出多语言大规模语言模型 支持多种商业和研究场景
GithubHuggingfaceLlama 3.2人工智能多语言大语言模型开源项目模型自然语言处理
Llama-3.2-1B是Meta开发的多语言大规模语言模型,支持8种语言。采用优化的Transformer架构,经9T token训练,具128K上下文长度。适用于对话、检索、摘要等任务,性能优于多数开源和闭源模型。支持商业和研究用途,可开发AI助手、写作工具等。提供原始和量化版本,适应不同计算资源需求。该模型在多语言处理和应用灵活性方面表现出色。
Llama-2-13b-hf - Meta开源的130亿参数语言模型 适用于多种NLP任务
GithubHuggingfaceLlama 2人工智能元宇宙大语言模型开源项目模型自然语言处理
Llama-2-13b-hf是Meta开发的大规模语言模型,拥有130亿参数。该模型在2万亿tokens的公开数据上预训练,采用优化的Transformer架构。它支持对话、问答、文本生成等多种NLP任务。与Llama 1相比,Llama 2在代码、常识推理、世界知识等基准测试中表现更佳。此模型开源可用于商业和研究,为AI应用开发奠定了基础。
Llama-3.1-70B-Instruct-lorablated - Llama 3.1 70B的未删减版本与高效LoRA技术的应用
GithubHuggingfaceLlama 3.1合并方法应用程序开源项目模型模型适配量化
Llama 3.1 70B的未删减模型采用LoRA技术,实现了高效的模型融合。项目通过abliteration和任务算术技术创新地处理LoRA适配器,确保模型的完全开放性和高水平输出。在角色扮演等多功能应用中表现出色。该项目得到了@grimjim和@FailSpy的技术支持,并提供了详细的量化与配置指南,经过多次测试验证有效。用户可使用提供的命令轻松复现模型。
Llama-3.2-11b-vision-uncensored - 图像处理与自然语言生成的先进集成工具
AI助手GithubHuggingfacealpindale/Llama-3.2-11B-Vision-Instruct图像处理开源项目模型模型量化自然语言生成
Llama-3.2-11b-vision-uncensored项目结合了图像处理和自然语言生成,使用Peft和torch库,专注于提供直接且无偏见的AI响应。自定义配置支持高效模型加载,适合要求高度注意力的场景。
h2ogpt-4096-llama2-13b-chat - Meta Llama 2 13B Chat克隆模型架构与性能比较
GithubHuggingfaceLlama 2Metah2oGPT开源项目文本生成模型模型架构
h2oGPT提供了Meta Llama 2 13B Chat的克隆版本,展示其模型架构及功能。在h2oGPT的演示中,可以进行模型对比及私聊文档,了解其与其他模型的差异。通过LLM排行榜,可以查看其性能表现。这一项目基于Llama模型的结构特征,如多层感知机制、嵌入技术和注意力机制,增强了文本生成能力。更多信息请访问H2O.ai。
Nemotron-Mini-4B-Instruct-GGUF - 量化模型应用指南与选择推荐
项目通过llama.cpp实现模型的imatrix量化,支持多种格式用于文本生成。用户可在LM Studio中运行这些量化模型,选择合适版本以优化内存与性能。推荐Q6_K_L、Q5_K_L等高质量版本,适用于嵌入与输出权重要求高的场景。支持ARM芯片的Q4_0_X_X版本提供显著加速。使用huggingface-cli简单易用,确保资源充足以提升体验。
llama-gpt - 私密自托管聊天机器人LlamaGPT,支持Nvidia GPU和Code Llama模型
GithubLlamaGPTNvidia GPU人工智能开源项目热门离线聊天机器人自主托管
LlamaGPT是一个自托管、离线的ChatGPT类聊天机器人,基于Llama 2开发,确保100%数据隐私,无需数据外传。最新版本新增对Code Llama模型和Nvidia GPU的支持,可在各类硬件上灵活部署,包括但不限于umbrelOS家庭服务器、M1/M2 Mac以及支持Docker的系统。LlamaGPT支持多种模型,包括但不限于7B至70B模型,且兼容OpenAI API,开发者友好,便于集成和功能扩展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号