Project Icon

dolphin-2.6-mistral-7B-GGUF

兼容多平台的量化AI模型格式

该项目提供多平台兼容的GGUF格式模型文件,包括对GGML的量化替代方案,支持多种比特量化,适用于Windows、Linux和macOS平台的模型推理和GPU加速。用户可以选择合适的量化参数文件,并通过多种工具和命令行进行下载和运行,提升模型推理性能。

dolphin-2.9.3-mistral-nemo-12b - AI助理与编程功能结合的多样化模型
Dolphin 2.9.3GithubHuggingfaceapache 2.0许可功能调用开源项目无偏见模型训练数据集
Dolphin 2.9.3由Eric Hartford和Cognitive Computations开发,基于mistralai/Mistral-Nemo-Base-2407,并使用ChatML格式。这个模型集成了多种指令跟随、对话和编程能力,涵盖初步代理功能和函数调用。数据集经过过滤,以去除对齐与偏见,增强模型的合规性。由于模型未进行内容审查,建议在对外服务前实施自定义对齐层。使用此模型需要自行承担责任。它在Apache 2.0许可下发布,允许多种用途,包括商业用途。
ggml - C语言开发的机器学习张量库 支持多种AI模型推理
GPU加速Githubggml开源项目推理机器学习量化
ggml是一个C语言编写的机器学习张量库,支持16位浮点和整数量化。该库提供自动微分、优化器和多架构优化,无第三方依赖。ggml可用于GPT、LLaMA、Whisper等多种AI模型的推理。它在CPU上表现高效,同时支持GPU加速,适用于多种设备和平台。
AutoGPTQ - 基于GPTQ算法的LLM量化与推理优化工具包
AutoGPTQGPTQ算法Github安装指南开源项目推理速度量化模型
AutoGPTQ是基于GPTQ算法的LLM量化工具包,支持多种模型类型和硬件平台的推理优化,整合Marlin与Exllama内核,提升推理速度与性能,适合在资源受限环境中部署高效的语言模型。
JSL-MedLlama-3-8B-v1.0-GGUF - JSL-MedLlama-3-8B量化版本适应不同性能需求
GithubHuggingfaceJSL-MedLlama-3-8B-v1.0医学开源项目性能模型模型下载量化
项目提供多个适用于JSL-MedLlama-3-8B模型的量化方案,涵盖不同计算性能和存储需求。采用llama.cpp进行的量化涵盖从高到低的质量选项,满足不同设备资源条件。推荐使用Q5_K_M或Q4_K_M量化版本,以实现质量与性能的平衡,确保硬件资源的最佳利用和精准的医疗文本生成。
Llama-3.1-Nemotron-lorablated-70B-i1-GGUF - Llama-3.1的矩阵量化技术优化模型性能
GithubHugging FaceHuggingfaceLlama-3.1-Nemotron-lorablated-70BQuants使用方法开源项目模型量化
该项目提供了一系列用于Llama-3.1-Nemotron模型的加权和矩阵量化文件,旨在优化模型的性能和运行效率。这些文件在缩小模型尺寸的同时保持了质量,适用于多种场景。用户可依据需求选择适合的量化级别,具体使用说明请参阅指南。项目的成功得益于各方支持和资源,推动了更多高质量量化文件的开发,助力广泛的研究和应用。
MIstral-QUantized-70b_Miqu-1-70b-iMat.GGUF - 优质法语对话能力的70B模型,适用于大容量VRAM
GithubHuggingfaceMiqu 1 70bMistral AI上下文大小开源项目模型法语量化
Miqu 1 70b是Mistral Medium Alpha的一个模型,由Mistral AI公司开发,适合法语使用者。该模型在法语对话中表现出色,智能性能与精调的Llama 2 70b相当,并倾向于避免过拟合。Miqu提供多种量化格式,Q4_K_S和Q3_K_M在48GB和36GB VRAM上支持完全卸载,满足大容量VRAM用户需求。虽然Miqu与CodeLlama 70b有相同的100万theta值,但在实验中证明其最大上下文能力为32k,相较于4k更具优势,并提供较低的周转率。
buddhi-128k-chat-7b-GGUF - 高效的文本生成模型量化方式,保障性能与质量
GithubHuggingfacellama.cpp开源项目模型质量量化高精度
本项目通过llama.cpp的量化处理,满足多样硬件需求,提供不同文件格式。i-matrix选项的应用和各类量化方式的整合,提升了模型精度与效率。根据RAM和VRAM情况,用户可以选择合适的量化版本。通过特性图表选择K-quants或I-quants,尤其是I-quants在性能和体积方面更具优势。下载指引详细,便于用户节省存储空间并优化性能,支持多种GPU平台,适合专业用户高效部署。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
gemma-2-27b-it-gptq-4bit - Gemma-2-27b的量化模型,优化加载与推理效率
GPTQModelGemma-2GithubHuggingface开源项目模型模型推理自然历史博物馆量化
Gemma-2-27b经过GPTQ 4位量化优化,使其在资源受限环境中高效运行。采用GPTQModel量化,并通过vllm进行推理,适用于简洁高效的推理场景。关键特性包括128组大小、动态分组、对称量化、激活功能和顺序推理,提升模型体验。
Llama-3-8B-Instruct-GPTQ-4-Bit - 利用GPTQ量化优化模型性能的新方法
Apache AirflowGPTQGithubHuggingfaceMeta-Llama-3-8B-Instruct开源项目数据协调模型量化
Astronomer的4比特量化模型通过GPTQ技术减少VRAM占用至不足6GB,比原始模型节省近10GB。此优化提高了延迟和吞吐量,即便在较便宜的Nvidia T4、K80或RTX 4070 GPU上也能实现高效性能。量化过程基于AutoGPTQ,并按照最佳实践进行,使用wikitext数据集以减小精度损失。此外,针对vLLM和oobabooga平台提供详细配置指南,以有效解决加载问题。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号